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FOREWORD

This report summarizes the work performed under Contract NAS8-21091 (Impulsive
Transfer Study). It is intended for use as a reference document on the subject
of impulsive trajectories. The main body of the report consists of a survey of
the state-of-the-art in this field. Also, an extensive bibliography of all
papers, reports, and articles which deal with impulsive trajectories and related
sub jects has been included.

Before attempting to seek out informstion on a particular problem, the
reader is encouraged to consult the introductory section in which the classification
of subjects and definitions of important terms are explained. Once an understand-
ing of the method of categorization has been gained, specific subjects can be
identified readily from the breakdown by topics on page 8. Each of the sections
is written independently so that a familiarity with material in the early sections
is not a prerequisite to understanding later sections. A liberal referencing
policy is used throughout the text to facilitate the pursuit of pertinent papers.
Although the referencing system 1s basically chronological where more than one
reference is listed, assignment of credit for the first solution of a given problem
was not a concern in this study. Consequently individual authors are not generally
singled out.

The authors gratefully acknowledge the guidance and support of Mr. Arthur
Schwaniger and Mr. Rowland Burns of the NASA Marshall Space Flight Center in
the conduct of this research study. We are also indebted to Mr. Theodore N.
Edelbaum of Analytical Mechanics Associates who served as a consultant during
the study and who contributed Appendix III, Singular Arcs.
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A Survey of Impulsive Trajectories

SUMMARY

An extensive survey of astrodynamics problems in which thrust periods are
simulated by impulses has been made. This study was performed in three phases:
(1) a literature search, (2) a categorization of problems and classification of
papers into these categories, and (3) a review of papers and summary of known
results on impulsive trajectories. '

‘Basic obJjectives in this program were to perform a survey which would produce
a coherent picture of the state-of-the-art in this field and to isolate problem
~areas in which future research should be applied. Impulsive trajectories were
categorized into three major groupings: intercept, transfer, and rendezvous.
Within these major categories, impulsive transfer topics were classified in a
logical sequence, and detailed discussions of each topic are provided in this
report.

.CONCLUSIONS AND RECOMMENDATIONS
1. The subject of fixed-time trajectories, as applied to specific problems in
intercept, transfer, and rendezvous, has received insufficient attention in

the literature.

2. Optimal multi-impulse trajectories should be investigated for application in
egch of the ma jor trajectory categories.

3. Optimal, time-fixed rendezvous is a éubject for which the solution of basic
problems would be beneficial to many priority space flight applications.
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INTRODUCTION

The subJject of impulsive trajectories has experienced a rapid growth which
parallels the pace of advances in many fields of space technology. In fact, the
accumulation of publications on this subject can be directly correlated with the
launching of Sputnik I in 1957. The Bibliography on Impulsive Transfer which was
compiled in this study contains 314 entries, fewer than 5% of which appeared
before 1958. During the first five-year period after Sputnik, the -literature on
impulsive trajectories grew at an astronomical rate, and papers from this period
comprise about 37% of the bibliography. The last five-year period has seen a con-
tinuation of that growth; 58% of the publications having appeared since 1963.

The subJject of impulsive trajectories is unlike some other specialized study
areas,however, in that it is not generally thought of as a separate discipline
within space flight technology. Therefore, while the body of literature on the
subject has reached a cumbersome state, no authoritative textbooks have appeared
to organize and summarize the current state of knowledge.

For a newcomer to this field, it is difficult to arrive at a clear picture of
what problems remsin to be solved and what methods of approach have been successful
in treating related problems. At the same time, even experienced researchers have
difficulty keeping abreast of recent developments because of commitments to other
fields of endeavor within space technology.

The primary goals of this study were: (1) to survey the field of impulsive
trajectories, including both optimal and nonoptimal solutions, (2) to classify
and describe known results in a form useful for reference purposes, and (3)
to isolate problem areas which have received insufficient attention. Attainment
of these goals serves to provide a foundation upon which future advances can be
sought in a systematic way.

METHOD OF APPROACH

The progrem was divided into three tasks: (1) a literature search, (2) a
classification of papers and categorization of problems, and (3) a review and
summary of the results obtained in these papers.

Literature Search '

The initial survey of the literature produced a list of well over 300 articles,
papers, and reports on impulsive trajectories. This initial 1ist, or unabridged
bibliography, included all documents available in the following library reference
sources:
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Defense Documentation Center Technical Abstract Bulletins
NASA STAR Index

ATAA International Aerospace Abstracts

Engineering Index

Physics Abstracts

Electrical Engineering Abstracts

UA Library Catalog

Every item even vaguely related to impulsive trajectories was included in the
unabridged file, and a copy of each document was requested by the UA Library
Acquisitions Staff. Thus, this list served as a basic working file, the size ahd
content of which varied during the study. The final result was the abridged bibli-
ography consisting of 314 entries which appears in this report. In arriving at the
final bibliography, many changes in the preliminary list were made during the course
of the study. Discovery of additional sources for new papers, current contributions,
translations of foreign papers, exclusion of nonapplicable papers in the unabridged
list, and use of related surveys, all necessitated changes.

There have been a number of survey papers written on subjects related to
impulsive trajectories. These are Entries 38, 53, 179, 180, 148, 195, and 198
as listed in the Bibliography of this report. Only two of these (195, 198) deal
specifically with impulsive trajectories, and while both are recent, neither is
available in English translation. Each of the surveys contributed additional
references to the bibliography, but 195 and 198 can be singled out as especially
useful because they include summaries of current knowledge in several important
problem areas relevant to this study.

A few textbooks contain important informstion (66, 22,172, 253, 310) and
a number of handbooks are available (80, 126, 127, 247, 30L4) from which data on
specific problems. can be obtained. Although the problems treated in these volumes
are generally of the simplest type (textbook problems), each contains either an
especially good treatment of a well known problem, a problem formulation not
avallable in other publications, or a unique presentation of data. Reference is
made to these documents under the appropriate categories in the survey.

The study was intended to be limited to impulsive trajectories, including:
orbit transfer and rendezvous; minimum-fuel or minimum-time trajectories; optimum
or nonoptimum trajectory modes; and approximate, anslytical, and numerical methods.
There are g number of papers which are related to impulsive trajectories, but only.
in a peripheral way. For example, many mission studies have been performed in
which the impulsive approximation was used, but where the intent of the study was
to obtain specific data such as payload requirements, launch opportunities, entry
speed limits, etc. In these studies the use of impulses was incidental, and
ordinarily no Egﬂ_results concerning impulsive trajectories were obtained. Other
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peripheral areas in which impulses are used, but only as a computational or con-
ceptual convenience, include guidance and navigation studies and optimization
techniques.

It was necessary to establish a criterion for including or excluding specific
papers. The criterion used is as follows:

Any paper not primarily concerned with the study of impulsive
trajectories, and in which no new results are obtained, was
excluded from the Bibliography.

A few papers were considered doubtful according to this definition, and they were
included. Also, a number of papers on impulsive trajectories which appear in the
Bibliography are not mentioned in the survey because they contain no new or signif-
icant results. BSuch papers are recorded in the Bibliography for the sake of complete-
ness and to indicate that these papers were reviewed in the study.

Acguisition of papers was easy in the case of articles appearing in the open
literature. But in some cases acquisition was difficult or impossible, and approx-
imately lO% of the entries in the Bibliography were never cbtained. Most of these
were older papers which appeared as preprints in connection with technical meetings,
foreign publications, theses, company reports, etc. Access to personal files of
UARL employees and consultants was invaluable in obtaining some papers which other
researchers may have difficulty in acquiring. For this reason a policy of multiple
referencing was followed in the survey. In most cases at least one reference should
be easily available. Furthermore, where a paper appears in more than one place, the
most accessible reference is usually presented first, even though this sometimes
upsets the otherwise chronological listing of papers by a particular author.

Foreign papers have been an important source of information in this study.
However, it was felt that constant reference to untranslated papers would compromise
the usefulness of the survey. Therefore, wherever possible, translations are
referenced along with the original paper. Some of these tranlsations are difficult
to obtain but several sources of translated papers are readily available. An example
is the journal, Cosmic Research, which is a complete translation of the Russian
Journal, Kosmicheskie Issledovaniya.

It was apparent at the outset of the study that some important French papers
(which were not translated at that time) would be of importance. Translations of
these papers were undertaken early in the study, and these papers (193, 194, 199)
will be available shortly after the publication of this report. A few other
follow-up papers (195, 196, 198, 200, 201) are also referenced in the text of the
survey, but have not yet appeared in translated form.
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As an aid in ascertaining the degree of use made of each item in the Bibli-
ography, Table I was prepared as a breakdown according to usage. If an item appears
under the heading, Not Acquired, no copy of the paper was obtained. If it appears
under the heading, Reviewed, But Not Referenced in Text, it is not referred to at
all in the text of the survey. There are additional lists in Table I, one of which
contains those foreign papers which were acquired, but not in English translations,
and several more which are explained further on in this section.

Classification

The first problem which arose in attempting to classify and categorize the
hany papers on impulsive trajectories was the lack of universal definitions for some
important words which are used frequently. In particular,it was found that the words
terminal, transfer, and rendezvous are used inconsistently, and that definitions of
some terms are required to allow a sensible classification. Therefore, the following
definitions were made to describe types of trajectories and the boundary conditions
which can be specified in particular problems.

Boundary Conditions

1. Free Orbit - radius, speed, and path angle specified as functions of true
‘ anomaly

2. Fixed Orbit - radius, speed, and path angle specified as functions of
position in space '

3. Terminal - specified radius and velocity vectors (a specific point on a
specific orbit) '

L. Subterminal - an incomplete terminal; i.e.,one for which radius vector,
velocity vector, or both are not completely specified

Trg jectories

1. Intercept - starts from a prescribed or a partially prescribed initial
condition (orbit, terminal, or subterminal), and ends at a
partially prescribed final condition (subterminal); e.g.,
from a circular orbit to & specified radius and path angle,
as in some disorbit problems

2. Transfer - starts from a prescribed initial motion and ends at a pre-
scribed final motion; e.g., orbit-to-orbit, terminal-to-terminal
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3. Rendezvous - starts from a prescribed initial motion and ends at a time-
related prescribed final motion, e.g., satellite-to-satellite

"Prescribed" motion, as used in the above definitions, refers to the pre-
dictable motion which ensues if a terminal or orbit is specified. In the case of
a subterminal the resulting motion camnnot be predicted because position and/or
.velocity are not completely specified.

In the categorization of papers the above trajectory types were selected as
the major categories. Thus Intercept, Transfer, and Rendezvous are taken up in
that order as separate and distinct subjects in the survey. Subcategories were
chosen somewhat differently within each of these major categories, the general
objectives being to meximize the correlation among results and to achieve a reasonable
balance by topics. . Attainment of equal-length sections was not in itself an objective.

Indeed, even in the major categories, Transfer is several times longer than either
Intercept or Rendezvous.

The most common breakdown of categories was according to geometrical features
such as coplanar or noncoplanar boundary conditions, intersecting or nonintersecting
orbits, type of conic section, etc. Use of time constraints, such as time-fixed
or time-free, as a major category was ruled out by the very small number of papers
which considered such constraints. Therefore, all results described in the survey
refer to time-open problems unless a time constraint is specifically mentioned. In
a few cases (Rendezvous, Terminal-to-Terminal Transfer) time-fixed and time-open are
used as minor categories. Everywhere else, the few examples of time=constrained
problems are discussed separately within the text under the appropriate problem
designations. '

Review and Summary of Results

The task of reviewing and summarizing the results of over 300 technical papers
is a difficult undertaking, Jjust by virtue of the scope of the work. Each of the
papers for which copies could be obtained (see Table I) was reviewed, and a short
abstract of each paper was written to condense its important features into a
manageable space; In some eases these reviews were only a few lines and in other
cases they were several pages long, depending on the extent of new results obtained
or the significance of the conclusions reached. The reviews contained at least.a
description of the subject and the results obtained and, where appropriate, the
method of analysis and the intended application were also described.

These short reviews permitted classification of papers by categories. By
selecting a category and leafing through the file, those papers whose subjects were
appropriate to the category could be removed and grouped. Further subgroups could _
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then be formed and, finally, papers treating identical problems could be isolated.
The process was complicated by the fact that many papers deal with more than one
specific problem, and therefore required special treatment.

There are a number of papers which are not referred to in the survey but which
were considered important enpugh to be included in the Bibliography. These papers
fall into a few problem areas which can be described as computational techniques,
correction maneuvers, interplanetary applications, and terminal phase rendezvous.
The papers in question are listed under these headings in Table I. The exclusion
of these subject areas is not meant to downgrade their importance, but rather to
underseore the fact they are distinct subjects in their own right and could not be
adequately treated in a study of this length and scope. By consulting Table I, a
hard core of useful papers on these subjects can be guickly extracted from the
Bibliography and further references can be pursued in each area.

As an additional item of investigation in this program, effort was to have been
devoted to the study of basic problems associated with space rescue and space
station logistics. The rendezvous problems involved in these applications are
complex, and solutions to them were not expected during the course of the program.
However, the methods of analysis which may lead to solution of these problems are
described in Appendix I and several recent contributions of significance in this

regard were discovered during the program. These contributions are described in the
section entitled Rendegzvous.

Appendix II contains a discussion of the impulsive approximation. In Appendix
IIT the subject of singular arcs is reviewed briefly from the standpoint of how such
solutions yglate to impulsive trajectories.

A complete breskdown by topics of all information contained in the survey
is presented on the next page. In using this report the reader will find this
topical summary useful in locating particular problem areas. A glossary of terms
peculiar to the subject of impulsive trajectories is also provided at the end of
this report. :

INTERCEPT TRAJECTORIES

The most common intercept problem treated in the literature is disorbit, but
there have been a few studies in which either no application was specifically
mentioned, or else the application included intercept of a point farther from the
focus than the initial condition. Since the analysis is not affected by whether
the trajectory goes toward or away from the focus, general results hold for both
cases. However, in those studies for which disorbit was the intended application,
numerical data are provided only for inward paths.



G-910557-11

BREAKDOWN BY TOPICS

Specified Radius
General Intercept
Specified Point

TRAJECTORIES Prescribed Radius
1
Cop Prescribed Radius and Entry Speed
Disorbit

Prescribel Radius and Entry Angle
Prescribed Radius, Entry Speed, and Entry Angle

Eoncoplanar

_ [ Orbi t-to-Orbit
Free-Orientation Transfer —— Orbit-to-Subterminal
_Subtemiml-to-&lhtenniml

Parabola-=to-Parabola
Ellipse-to-Parabola
Hyperbola-to-Parabola
Specified Energy
Circle~to-Hyperbola Nonintersecting Orbits
Specified Asymptote

Unbounded Orbit Transfer

Fllipse-to-Hyperbola

Unconstrained Approach
_Hyperboln-to-ﬁper 2018 1 constrained Approach

= Two-Impulse
Coplanar Orbits -[ e-Inpulse

Circle-to-Circle Transfer

Two-Impulse
Roncoplanar Orbits—{ Three-Impulse
- General Results

- —One-Impulae
Coplanar Orbits—{ Two-Impulse

Circle-to-Bllipse Transfer _H-Impulae

Honcoplanar Orbits

TRANEFER [Axes Aligned
TRAJECTORIES - Intersecting Orbits
Coplanar Orbits-— Axes Opposed Konintersecting Orbits
- Tangent Orbits
Coaxial Ellipse Transfer _
Axes Aligned
Noncoplanar Orbits —
L oP. Toils _Axes Opposed
[ Coplapar
ngruent Orbit
Co ent Orvits HNoncoplanar

[ Changing Orbit Elements

Circle~to~Circle

ghboring Orbits —
Neighboring Orbite =1 o 11 Becentricity Orbits—j COPLanar
Noncoplanar

| Multi-Impulse Transfer

Special Cases
Tangency Conditions

Cotangential Transfer —| Hearly Tangent Orbits
Small~Eccentricity Orbits

Ascent to Circuler Orbit

Coplanar Ascent to Elliptic Orbit
_Ascent Noncoplanar

Time-Free Coplanar Terminals

Terminal-to-Terminal Transfer —| Koncoplanar Terminals
Time-Fixed

Useful Angle

- Transfer Modes

. | Coplanar - rniersecting Orbite
Ellipese-to-Ellipse Transfer —f Nonintersecting Orbits

Noncoplanar

Time-Open Rendezvous

Coplanar
RENDEZVOUS Circle-to-Circle R
———d  Pime-. oncoplanar
TRAJECTORTES me-Limited Rendezvous—| o 'ei Orbits

Kelghboring Orbits
ime-Fixed Rend
| Time Rendezvous — g oneral Orbits



G-910557-11

In viéw of the predominance of disorbit papers in the intercept category this
section is divided into two parts, General Intercept and Disorbit. In both parts
the discussion is categorized according to final conditions, i.e., intercept of a
radius boundary, intercept of a point target, etc. Different initial conditions,
consisting of orbits, terminals, and subterminals, are taken up successively under
each category.

General TIntercept
Almost all intercept problems have been analyzed under the assumption of a
one-impulse mode. Unless otherwise noted, one-impulse intercept with time open is

understood in the following.

Specified Radius

If the initial condition is a circle the obvious optimum intercept is a co-
planar, Hohmann-type, 180-deg trajectory resulting in a grazing intercept of the
target radius. In fact this same solution can be had for any initial condition if
an initial coast to pericenter is used. If an initial coast is not used, the
terminal-to-specified radius problem becomes considerably more complicated. It was
shown in 263 that solution of this problem is equivalent to finding the minimum
distance from a point to a conic section. The conic section is an ellipse if
ry > ry and a hyperbola if ry > 1y (11). A quartic equation must be solved to
obtain the optimal solution (263) which is not generally characterized by tangential
application of thrust (11).

Another problem, which has been treated in 58 and 82, is a close solar approach.
The obJject is to approach the focus from an initially circular orbit, only the final
radius being specified. A one-impulse maneuver would entail a tangential braking
impulse to cause an elongated transfer ellipse with pericenter equal to the desired
approach distance. It was shown in 58 that a two-impulse, bi-elliptic maneuver
permits large reductions in AV at the expense of long transfer times. In the limit,
escape to a parabola and return by an infinitesimal impulse is the optimal maneuver.
An attempt to modify the finite two-impulse mede by minimizing time for fixed AV
(82) did not result in appreciable improvement.

Specified Point

The most common intercept problem treated in the literature is interception
of a specific point. If the initial condition is a circular orbit, specification
of radius and central angle is equivalent to specifying the target point in the
coplanar case. This problem has been studied in 22, 147, and 270. In 22, the
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important difference between the minimm-AV solution and the minimum-energy path
was demonstrated. Only in the case of a 180-deg central angle are these solutions
the same. For smsller ahgles the minimum-energy solution can result in a large
increase in AV over the optimum (22). If the central angle exceeds 180 deg, an
initial coast should be made until the 180-deg condition is reached (147).

If the target point and-the initial circular orbit are coplanar there is a
value for O, the central angle, for each r, /Ty, which divides elliptic paths from
nonelliptic trajectories. The critical ranges of rl/rz and 6 within which elliptic
solutions are possible are described in 270. A useful summary of coplanar circle-
to-point intercepts is given in 270. These data are presented in Fig. 1 of this
report. The configurations for which nonelliptical solutions occur are noted on the
diagram. (It should be pointed out that the 180~deg solution can always be achieved
for 6 > 180 deg by using an initial coast. ) A complete summary of additional
variables and their behavior with r,/r, and 6 can be found in 2L9.

Perhaps the most common intercept problem is that for which the initial con-
dition is a terminal and the target is a point. This case has been congidered in
272, 263, 249, 71, 11, and 270. It was shown in 263 that a geometrical analysis
reduces the problem to that of finding the minimum distance from a point to a
hyperbola. Extensions using similar geometrical reasoning were carried out in 249,
11, 270, and 40. 1In each case solution of a quartic equation is necessary, as shown
in 84. Some extraneous solutions of this quartic result in "infinite" or "unrealistic"
trajectories which reach infinite radii enroute. Rules for identifying optimal
"reglistic" solutions are given in 270.

The equations for optimal one-impulse intercept of a point target starting from
an initial terminal are formulated in 272 and 249. Graphical data for various
parameters, including flight path angle and AV, are provided for ranges of rl/r2
and 6 in 249. An important study of a two-impulse intercept mode appears in T1.

In this case a plane-change maneuver enroute to the target point overcomes the
steep rise in one-impulse AV for central angles close to 180 deg. Although the
maneuver described in Tl is not optimal, it improves the two-impulse solution
drastically in this critical region.

Disorbit

Disorbit is categorized as an intercept problem since the initial condition
is often prescribed as an orbit or terminal but the final condition is almost always
a subterminal. The vast majority of studies have treated the problem of minimum-AV,
time-open, one-impulse, coplanar disorbit from a circle, ellipse, or terminal, to a
subterminal. The subterminal consists of a radius and a specified entry speed or
entry angle, or both. The radius is that of the upper limit of the sensible atmos-
phere. '

10
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Some studies have considered multi-impulse disorbit and, in a few, entry angle
or lateral range, rather than impulse, are extremized. However, since these
studies are not numerous and since their results and conclusions are specialized
in nature, they are not categorized separately in the discussion which follows.

The format used to summarize disorbit is similar to that used for Genersl
Intercept. Coplanar one-impulse disorbit is discussed first, and categprization
is according to final conditions. Thus, disorbit to a prescribed radius with entry
speed and angle open is comsidered first. Disorbit to a prescribed radius and entry
velocity with entry angle open is considered next, and the last case is disorbit to
a prescribed radius, velocity, and angle. Within each of these categories, different
initial conditions congisting of circular or elliptical orbits or terminals are
discussed separately and special considerations such as fixed or free central angle
are taken up within each of these subcategories. The last category is that of
noncoplanar disorbit,

Coplanar

Prescribed Radius

The problem of disorbit to a prescribed radius with no constraints on entry
speed or angle has been considered in 186, 263, 273, 249, 75, 11, 270, and 40. If
central angle is left open in this problem and the initial condition is an orbit,
the optimum one-impulse solution is a 180-deg transfer to a "grazing" entry (zero
entry angle) caused by a horizontal impulse at apogee. (It was shown in 4O that a
two-impulse solution using parabolic arcs is always better than this minimum-energy

solution if the radius ratio, ry/rs, is very large.)

If the initial condition is a circular orbit and the central angle is fixed,
the results depicted in Fig. 1 apply (270). Additional data appear in 249.

If central angle is fixed, it was shown in 270 that for each direction of the
initial velocity vector there is an optimal magnitude and for each magnitude g
best direction. Whenever possible a grazing entry is used, but some boundary con-
ditions preclude such a solution. The impulse is not generally tangential even
when the disorbit point is apsidal, unless the initial velocity lies within a
specific range (11).

If final entry angle is maximized for a fixed AV (steepest entry) from a
circular orbit, two regimes of solution occur (75). A horizontal retro is optimum
for small AV; for large AV, the retro angle for the steepest entry also yields
minimum range. The large-AV, short-range solution was also obtained for the case
of neighboring circular, or low-eccentricity orbits (186).

11
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E;gsg;ibed Radius and Entry Speed

— s ————— — — — o — T —

This problem has only been treated for the case of unprescribed central angle.
Specification of both the final radius and entry velocity, but not entry angle,
always leads to grazing entry as the minimum-impulse solution (40), whether the
initial condition is an orbit or a terminal. If the initial orbit is specified
(but not the disorbit point) a quintic equation results and two solution regimes
occur. Below a certain entry speed, tangential disorbit from perigee is optimal.
Conditions describing this limit are presented in 286 for initial circular orbits
and in 40 for elliptical orbits. If the initial orbit is circular, the conditions
describing this limit are functions of rl/rg only.

If the initial condition is a terminal, closed-form solutions for optimal one-
impulse disorbit can be derived (L40). Grazing entry is again optimal regardless

of entry speed, but tangential impulses are optimal only for entry speeds below a
predictable value.

Prescribed Radius and Entry Angle

The optimum retrofire angle for minimum impulse 1s usually horizontal for one-
impulse disorbit from a circular orbit to a given entry angle with central angle
open. If rl/rg > 1.125 the impulse is always horizontal, and it is below horizontal
for r; /rp < 1.125 (270 and 286). Minimizing impulse with respect to the retrofire
angle, for a given entry angle, is equivalent to maximizing entry angle for a given
impulse (18). For entry angles below a limiting wvalue there exists a relative
maximum of AV as well as a relative minimum (209). That is, there is a worst one-
impulse disorbit altitude as well as a best altitude. (Disorbit altitude refers
to the point of departure from the initial orbit). However, above this limiting
entry angle, impulse decreases monotonically with increasing altitude. For small
entry angles, Vs, the minimum AV for given vy /T, is shown in Fig. 2. The optimum
thrust angle, ¢, is indicated on the curves in the region where its value is dif-
ferent from zero.

When the initial orbit is noncircular, two solution regimes are again found (77),
one for shallow entry angles and one for large angles. Horizontal impulses occur
only if the disorbit point is at an apse, while for other disorbit points thrust
angles are often large. Disorbit at apogee results in minimum impulse for shallow
entry angles, although for large angles it is slightly better to disorbit either
just before or Jjust after apogee. In 4O, conditions on eccentricity, major axis,
and entry angle are presented to determine whether apogee disorbit is optimal.

12
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In 266, the determination of the optimal disorbit location is reduced to
simultaneous solution of two quartic polynomials. Conditions are defined (as in
40) to describe the configurations which lead to off-apogee disorbit, and it is
shown that when the initial orbit has very low eccentricity, off-apogee disorbit is
optimal. When this occurs there are two equal optima which are symmetric with
respect to apogee. Characteristic velocity saving is up to lO%, compared with
apogee disorbit, when off-apogee disorbit is optimal.

One further effect noted in 266 was that, 1f disorbit occurs prior to apogee
on the initial orbit, the transfer ellipse is entered prior to apogee. Similarly,

if disorbit occurs after apogee on the initial orbit, the ellipse is entered after
apogee.

— o m— g g g . - o= —" ——

If both velocity and path angle are given at the final radius, with central
angle open, the size and shape of the transfer orbit are predetermined, but its
orientation is not. It is shown in 40 that a quintic equation must be solved to
determine the optimum one-impulse disorbit from a given ellipse in this case. In
general, the disorbit point is not apsidal, nor is the impulse horizontal. A two-
impulse solution to this problem has been obtained in 114 for the case of disorbit
from an ellipse. It is shown in 114 that a tangential impulse at apocenter is
optimal for the first impulse. If the initial condition is described by a radius
and velocity vector, the first impulse of an optimal two-impulse maneuver is tan-
gential only if the initial velocity has no radial component (221). A closed-form
solution to this problem appears in 221.

Noncoplanar

The only noncoplanar disorbit problems which appear in the literature are those
with final radius prescribed but with entry speed and entry angle open. (The angle-
fixed case is treated briefly in 275). Using concepts from spherical trigonometry,
the entry or impact point is usually related to the disorbit point by two spherical
arcs or angles. One of these is down-range angle measured in the plane of the
initial orbit or terminal, and one is a lateral range measured normal to this plane.

If the initial condition is a circular orbit and down-range angle is left
open, two simultaneous quartic equations must be solved (274). Even though a 180-
deg down-range angle is optimal in the coplanar case, down-range angle quickly
approaches limits of 90 deg and 270 deg if lateral range is increased from zero
(T4). Since these limits are approached rapidly as lateral range is increased,
a 90-deg range angle is a good approximation to the optimum for most cases. Thrust
angles are always small in the case where the down-range angle is open (T4).

13
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" Only one quartic equation need be solved if the down-range angle is specified
(274). If it is greater than 180 deg, a grazing entry results and an exact solution
has been obtained (T4). If down-range angle is less than 180 deg, an approximate
solution is available (T4), and if it is exactly 180 deg, the lateral range must
be zero (T4 and 270). It is interesting that if the radius ratio r, /r, is near
1.0 and the lateral range is-.large, thrust is pointed outward (positive ¢), result-
ing in a "lofted" disorbit trajectory (7h4).

The case of noncoplanar disorbit from an elliptic orbit with down-range angle
open is considered in 275. For a specified lateral range the disorbit point appears
to be at apogee and the down-range angle is 90 deg. The case where AV is specified
and lateral range 1s maximized is also treated in 275.

Equations describing disorbit from a terminal to a noncoplanar impact point
are derived in 8. Results are presented for some specific cases, and "footprints"
for vehicles disorbiting from circular orbits are shown.

TRANSFER TRAJECTORIES

Free-Orientation Transfer

Early work on impulsive transfer (late 1950's and early 1960's) was devoted
largely to the problem of free-orientation transfer. In the context used in this
report, free orientation implies transfers between subterminals and orbits, since
the orientation of a terminal is specified by definition. If an orbit is specified
by its energy and angular momentum but not by argument of pericenter, its orientation
is free. Transfer between two such orbits is a free-orientation transfer, and an
optimal transfer of this type implies determining the optimum orientation angle as
well ag the number of impulses, impulse magnitudes, etc. By the same reasoning, a
subterminal consisting of a radius and a velocity vector can be the initial or final
condition of a free~orientation transfer.

The reader is referred to the definitions of terminals and subterminals stated
earlier. Some references noted in this section use definitions which are different
from those adhered to in this report.

Orbit-to~-Orbit

Most of what is known agbout free-orientation orbit transfer was-hypothesized or
proved in 277 and 276. It was shown in 277 that the noncoplanar case can always be
reduced to a planar problem because coplanar transfers are always more economical.
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(Ofvcourse, physical constraints may preclude the zero-inclination solution in a
real problem. Complete freedom of orientation is assumed unless otherwise noted.)
In other words, the optimum inclination angle between orbits is always zero. Unless
there is a restriction that the number of impulses cannot exceed one, the optimum
orientation of the axes of elliptical orbits is always coaxial and aligned (277).

It was stated in 193 that, for coplanar ellipses, AV increases monotonically with
angle between pericenter directions. Thus transfer between free-orientation
ellipses generally can be treated as transfer between coaxial, aligned orbits, a
category which is taken up in a later section.

One-impulse transfers can be made only if the orbits intersect or are tangent
for some orientation angle. Conditions for intersection of two orbits are described
in 79,'and s procedure for finding the optimum orbit orientation for one-impulse
transfer appears in 277.

Optimal transfers using more than one impulse are always of the Holmann type,
with tangential, apsidal impulses. Although such transfers were shown to be only
locally minimizing in 277, they were proved to be globally optimum in 20. In view
of these results, one-impulse transfers should not be used if two or more impulses
are permitted.

Since the optimum orbit orientation was shown to be coaxial, the results
obtained for free-orientation orbit transfer coincide with those for coplanar,
coaxial orbit transfer. Two-impulse, Hohmann-type transfers, and transfer through
infinity both occur. Four- or more-impulse transfers are never optimal (277) and,
in the two-impulse case, the apsides of the transfer ellipse coincide with the
larger apocenter and opposing pericenter of the initial and final orbits (277, 113).
The numerical results for these transfers are described in the section on.coplanar,
aligned, coaxial orbits. )

It is interesting that in the cases where there are two unequal values of
specific impulse (234), or where thrust is bounded, i.e., nonimpulsive (94), Hohmann-
type solutions are still optimal for free-orientation transfer.

Radius-constrained transfers between free-orientation orbits have been studied
in 123, 124, and 125. If upper and lower bounds are placed on the radius, the
entire transfer (as well as the initial and final orbits) must take place inside
an annulus. It was proved in 123 that if interior impulses occur in this problem,
they must be tangential and apsidal. This result also holds if only the transfer
orbits are radius-constrained (125). The basic results for the unconstrained
problem were extended in 124 to cover radius constraints. Thus one-, two-, and
three-impulse transfers occur. The two-impulse transfers connect one pericenter with
the opposite apocenter. The three-impulse transfers connect pericenfers and the
intermediate impulse is always at the outer limit of the annulus.
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Orbit-to-Subterminal

The optimum two-impulse transfer from an inner orbit to an outer coplanar sub-
terminal consisting of a radial distance and a velocity vector is a transfer from
pericenter of the immer orbit (114). The transfer orbit is tangent to the inner
orbit at pericenter. Similarly, if the transfer is from an inner terminal to an
outer orbit, the apocenter of the transfer orbit is tangent to the apocenter
of the final orbit. It is not known whether a multi-impulse maneuver can improve
on this two-impulse mode.

Subterminal-to~Subterminal

This case has been treated in 283, 219, 220, and 112. Of course, if the sub-
terminals are apsidal, the previous results for orbit-to-orbit transfer apply (112).
The general two-impulse case requires solution of a fourth-order system which was
first done in 283 by an iterative numerical method. In 219, the problem was reduced
to minimizing a function of two variables subject to a constraint and, in 220, it
was Turther reduced to solution of two quadratics. This latter solution is therefore
in closed form. The terminals considered in 219 and 220 are on orbits which cannot
intersect for any orientation so that at least two impulses are always required.

Unbounded Orbit Transfer

There are a number of spaceflight problems which require the use of unbounded
orbits, i.e., parabolic or hyperbolic orbits. Among these are: fast transfer
between orbits, escape from orbit (or capture), and flyby without capture. In
addition to such applications, parabolic orbits are useful in time-open transfer
between ellipses and circles, as described in other sections of this report.

Parabola-to-Parabols

Since velocity on a parabolic orbit diminishes to zero as the radius becomes
infinite, it is clear that infinity is the best place to transfer from one parabola
to another and that such a transfer can be effected by two infinitesimally small
impulses (199, 195, 121). Although the transfer between parabolas is an acadenmic
exercise, it should be pointed out that the principle of changing inclination and/or
direction at great distance from the focus is important. The use of parabola-to-
parabola transfer as an intermediate maneuver permits several of the problems which
follow to be treated as essentially free-orientation problems.

16



G-910557-11

Ellipse-to:Parabola

A tangential impulse at pericenter is the optimal mode of transfer from an
ellipse to an escape parabola. (This is true even in the restricted thrust case
(163).) 1If a particular parabolic orbit must be entered, two more impulses, both
at infinity and of infinitesimal magnitude, permit transfer to any other parabolic
orbit (199, 195, 121). Transfer from a parabola to an ellipse can, of course, be
made by the same maneuvers in reverse sequence.

Hyperbola-to-Parabola

Transfer from a hyperbolic orbit to a parabolic orbit begins with an infini-
tesimal impulse at infinity which changes the direction of the initial hyperbolic

speed so that a "grazing" passage occurs (199, 195). In other words, the closest
possible approach to the focus should be made. At pericenter of this hyperbola, a
finite tangential impulse results in a parabolic orbit which is followed to infinity.
At infinity, two infinitely small impulses are used to transfer to the desired final
parabolic orbit. If the orientation of the orbits is not prescribed, one of the
impulses at infinity can be omitted (121). Also, if no limit on approach distance

is prescribed, the approach hyperbola can be directed to the origin. In this limiting
case, AV = O for the entire maneuver.

Circle-to-Hyperbola

Transfer between circular and hyperbolic orbits has received considerable
attention because of its important application in escape and capture maneuvers.
If only the energy of the hyperbolic orbit is specified (pericenter distance and
axis orientation left open) the escape problem reduces to one of achieving a given
hyperbolic excess speed, starting from an initial circle. Examples of one~-, two-,
and three-impulse escape maneuvers are shown in Fig. 3.

The two-impulse maneuver wasg first considered in 230. Iater it was compared
with one-impulse escape (155), where it was shown that for low values of Ve the
single-impulse mode is superior. When Vo is equal to escape velocity at the circular
orbit radius, the one- and two-impulse modes require equal AV's. It is interesting
that for this condition (Ve = Ve,.), the radius r, in Fig. 3b does not affect the
calculation (61). For larger values of V., the two-impulse mode is always superior
to one-impulse escape.
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A three-impulse escape,'first presented in (58), can improve on either the one-
or two-impulse maneuvers, depending on the radius r; of the second impulse point
in Fig. 3c, which shouldbe chosen as large as possible. Some plots of AV/Vcl Vs
Voo/Ve, are provided in Fig. 4 for various radius ratios, r, /r, and 7, /r,,. Additional
graphs of this type can be found in 58. The limiting three-impulse escape involves
parsbolic intermediate conditions, r,/r; = =, and passage through the focus, r,,/r; =
If the maneuver is constrained to the space outside the circular orbit, a single
impulse is always the optimum coplanar escape mode.

—— e — —— — W m—— o —

Two-impulse transfer between a circle and a coplanar, nonintersecting hyperbols
was studied in 217. . This case is different from that just discussed in that both
energy and pericenter distance of the hyperbola are specified, but orientation is
still free. It was determined Q17)that the first impulse should always be tangential
and that the transfer orbit is a hyperbola entered at pericenter. The second impulse
should be applied as far from the focus as possible. TIn the limit, the optimal two-

impulse transfer is equivalent to a one-impulse transfer since the second impulse
becomes infinitesimal.

A hyperbolic asymptote consists of a hyperbolic excess speed, Ve, with a pre-
scribed direction. The line of action of this velocity vector is not fixed relative
to the focus, but can be translated parallel to itself (pericenter of the hyperbolic
orbit is unspecified)- The plane of the circle need not contain the hyperbolic:
asymptote. :

One-impulse transfer from a circle to a noncoplanar hyperbolic asymptote is
discussed in detail in 22 for the case of escape from Earth orbit. It is shown that
the best condition for transfer occurs when V, lies in the plane of the circle and
that launch should be delayed until this condition occurs. In this case the direction
of V, is assumed fixed relative to an Barth-centered corrdinate system, and the
circular orbit plane can be rotated about the Earth's polar axis. 'However, for some
orientations Ve, never lies in the orbit plane, and in these cases the launch point
should be chosen such that the out-of-plane component of the velocity impulse 1s as
small as possible. The optimum impulse is horizontal if Vo lies in the circular,
orbit plane, and is usually close to horizontal (Wlth a small downward component)
in the noncoplanar case.

A two-impulse mode in which the second impulse is at infinity and the first is

at the circular orbit radius was considered in 92. There is a critical angle
(between Ve and the circular orbit plane) above which the two-impulse mode is
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" superior to a one-impulse transfer. The larger the angle the greater is the benefit.
The limiting case, for an angle of 90 deg, consists of transfer to a parabola followed
by a 90-deg plane change and simultaneous acceleration to V, at infinity.

It was shown in 294 that a three-impulse transfer is often better than either
the one- or two-impulse solutions. The transfer described in 294 is not optimal
since only apsidal impulses at prescribed radii are permitted. Nevertheless sub-
stantial AV savings are shown for the case of escape from g circular orbit about
the moon to a specified noncoplanar hyperbolic asymptote.

In this three-impulse. mode the first impulse is horizontal but may contain a
plane change component. The second impulse is horizontal, at apocenter of the
resulting ellipse, and consists entirely of a plane change. (The first and second
coasting ellipses are congruent but inclined.) The third impulse is applied before
pericenter of the second transfer ellipse, its position, magnitude and direction
being optimized. Most of the plane change was found to occur at the second impulse
unless the inclination angle is very small.

The absolute optimum transfer between a circle and a noncoplanar hyperbolic
asymptote consists of: (l) transferring to a parabola by a tangential impulse,
(2) changing to a second (inclined) parabola by two infinitesimal impulses at
infinity, (3) returning on the second parabolas to a "grazing" passage where, (k)
another finite impulse establishes the desired escape hyperbola containing the
prescribed asymptote. An escape maneuver similar to this was first presented in 32.

Ellipse-to-Hyperbola

If parabolic intermediate arcs are permitted, the limiting solutions described
for the circle-to-hyperbola transfers also apply in the case of elliptic orbits (32,
195, 121). 1Injection from the elliptic orbit is always at pericenter.

The only studies of finite ellipse-to-hyperbola transfers in the literature
appear in 11 and 312. In 11 the problem is formulated as a one-impulse transfer
from a small-eccentricity ellipse to a coplanar hyperbolic asymptote. An ap-
proximate optimum impulsive solution is found, to first order in the elliptic orbit
eccentricity e, ; AV for the maneuver is expressed as a function of e, Ve, and
the angle between V., and the axis of the ellipse. The impulse is applied almost
tangentially (in the circular case a tangential impulse is optimal) but it is not
generally at pericenter. Location and direction of the impulse are determined and -
a considerable amount of data for various transfers is presented in 11.

In 312, one- and two-impulse maneuvers were compared for escape from various
elliptical orbits to specified hyperbolic conditions. The one-impulse maneuver
consists of a tangential impulse from the proper elliptic orbit true anomaly to
achieve the desired hyperbolic conditions at infinity. The two-impulse maneuver
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consists of a tangential departure from the ellipse followed by an "adjustment"
impulse at infinity to establish the hyperbola. For most end conditions, the
one-impulse transfer is better, although the optimum two-impulse transfer is better
for small hyperbolic excess speeds.

Hyperbola-~to-Hyperbola

If only the asymptotes of the hyperbolic orbits are specified, the velocities
Voy and Vo, are known, as is the angle I' between them. However, the pericenter
radil of the orbits are left open. Thus, while the orientation of each orbit axis
is fixed, the degree of "bending" during passage is not. The question of inter-
section of the orbits is not resolved until passage distances are specified.
Actually, transfer between prescribed hyperbolic orbits can always be reduced to
transfer between their asymptotes. This is accomplished by providing for two
infinitesimal impulses at infinity which leave the velocity magnitudes unchanged
but rotate the vectors slightly to adjust approach distances.

The case of unconstrained approach distance is a good starting point in this
problem although it results in degenerate optimum solutions. Perhaps the most
obvious case is that in which the hyperbolic excess velocities are equal, Vm Vm .
This transfer, referred to in 194k as the. "free transfer", never requires propuls1on
Any turning angle, O =T < 180 deg, can be achieved by selecting the proper approach
radius, a zero angle corresponding to infinite passage, P = «, and a 180-deg angle
corresponding to passage through the focus, P = O.

If the velocities are unequal, V“i £ V“b’ there is still a solution to the
unconstrained problem which requires no propulsion. This transfer is a limiting
case of the four-impulse transfer of 83. It consists of two impulses at the origin,
where any change in velocity can be attained at negligible cost, and two impulses at
infinity, where the change in direction requires negligible cost.

Constrained Approach

When a limif is placed on the approach distance, rp,,, the transfers described
above must be modified. A free transfer is still possible if the maximum turning
angle compatible with ry,, is large enough, I' S Tp.x. If T > T,,x, propulsion
must be provided.

The one-impulse transfer between hyperbolic asymptotes was first considered in
45 and was subsequently studied in detail in 83. A summary of AV data for various
values of I' and ratios V'C,C,Z/V(,:,l is provided in 83 in a series of summary graphs.
The optimum one-impulse solutions are described in terms of the approach distance
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required to achieve the best one-impulse transfer, and the penalty incurred by non-
optimal approach distances is indicated in the diagrams. These optimum solutions
involve nontangential, nonapsidal impulses although it is shown that tangential
impulses at pericenter are nearly optimal in all cases. An explicit solution to
the one-impulse problem appears in 194,

A recent study of hyperbolic orbit transfer with constrained approach dlstance
was described in 194. The transfers were categorized according to whether T <
Thax =(F1 + Tayb, where Iy, T; are the total turning angles on the respective orbits.
T T =(I"1 + FE»@, than a "grazing" one-impulse transfer is optimal. However, the
cases where I' 2 I} + I, involve several possible optimal modes of transfer, requiring
up to six impulses.

When the required turning angle is less than that achievable without propulsion,
r <(F1 + FQ»@ there are five possible modes of optimal transfer (194):

l. one-impulse nongrazing transfer with the impulse at a finite distance

2. two-impulse nongrazing transfer with one impulse at infinity and one
at finite distance (the former is situated on the side of the smaller
Vo, and is an acceleration if Vgi < VQ% and a brake if V&i > V“b)

3. one-impulse grazing transfer analogous to 1

L., +two-impulse grazing transfer analogous to 2 o

5. six-impulse grazing transfer with two finite impulses at r,,, and four
infinitesimal impulses at « (61).

Conditions on T, V“i’ and Voc,2 which define which transfer modes are candldates
for the optlmum are presented in 194 as series expansions in T.

When the required turning angle is too large, T' > (T; + I;)/2, there are six
possible transfer modes, all grazing:

1. six-impulse transfer analogous to that described above (always optimal
for T = 180 deg)

. one-impulse transfer with the impulse at infinity

two-impulse transfer with both impulses at infinity, one on each side

one-impulse transfer with the impulse at finite distance

two-impulse transfer with one impulse at a finite distance and the other

at infinity, but both on the same side

. same as 5, but with impulses on the opposite side

Ul Ew

[e)

Cotangential transfer between hyperbolic orbits was considered in 296, wherein
it was shown that for nonintersecting orbits the transfer orbit is an ellipse, and
for intersecting orbits the transfer orbit may be elliptical, parabolic, or hyper-
bolic.
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Circle-to-Circle Transfer

The problem of transfer between circular orbits may be considered as a limiting
case of transfer between free-orientation orbits because the major axis of a circle
is undefined. For the same reason it is also a limiting case of coaxial orbit
transfer.

More purely analytical effort has been devoted to circular orbit transfer than
to any other impulsive transfer problem. The simple nature of circular orbit motion
permits simplifications which naturally attract the analytically minded researcher.

Many studies which purport to treat general elliptical orbit transfer provide results
only when the orbits degenerate toc circles.

Coplanar Orbits

Transfer between circular coplanar orbits was the Tirst (109) and for many years
the only orbital transfer problem to be studied. Hohmann concluded that the optimal
two-impulse transfer between coplanar circles was by a transfer ellipse cotangential
to the circles at its apses. To go from one circle to a larger one requi}éé>two
accelerating impulses, and to get to a smaller circle requires two decelerating
impulses. Until recently the optimality of the Hohmann transfer was a hypothesis,
but now it has been established by a rigorous proof (20). Among all two-impulse,
time~open transfers between coplanar circles, the Hohmann transfer is a global
optimum. The possibility that Hohmann transfers may be optimal in force fields other
than the inverse square field is considered in (12).

Magnitudes of the individual impulses can be expressed as simple functions of
the radius ratio, rz/rl, which are plotted in Fig. 5 for radius ratios from 0.01
to 100.

It is apparent from Fig. 5 that transfers from a given circle to one k times
as large (k > 1.0) are less costly than transfers to a correspondingly smaller circle.
Thus, for example, it is more expensive to reach the origin than it is to escape.
This is true regradless of the initial orbit radius because only the radius ratio
affects the calculation.

An interesting feature of the Hohmann transfer to a larger circle (k > 1.0)
is that AV reaches a maximum for k near 10.0. Although the first impulse increases
monotonically with increasing k, the second reaches a maximum, then decreases to
zero as k goes to infinity. Observation of this effect led to the discovery of
the bi-elliptic transfer and the transfer "through infinity" which will be discussed
further on.
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A study of the coplanar circle-to-circle transfer was performed in (6) in
terms of hodograph parameters. This study is of particular interest because it
includes transfers with fixed central angles other than 180 deg. The data show
that penalties of 10% or less in AV result when the transfer angle is as low as
160 deg. Also, the monotonic decrease in first-impulse magnitude and the interior
maximum of the second impulse were confirmed when the fixed central angle is not
180 deg. These data, as well as additional information on the time required for
each time-open transfer, are presented in (6).

In another study (143) it was found that for two-impulse, fixed-central-angle
transfers between neighboring, circular orbits, the condition that the flight path
angles on the transfer orbit are equal at the two impulse points results in a
minimum AV. The flight path angles are always small and, for s 180-deg transfer,
they are zero. Although the analysis in 143 was carried out for small orbit
separations (Ar/r; << 1), numerical data are presented to show that the equal-
angle solution results in a close correlation with the optimum even for moderately
large separations.

Another approximate solution to this problem was performed in 290, in which
equations for semi-latus rectum of the transfer ellipse and AV were derived as
series expansions in Ar/r;. It was shown in 290 that, for transfer angles less
than 180 deg, the transfer arc lies entirely between the circular orbits, but
that when the angle exceeds 180 deg the transfer arc goes beyond the outer circle,
through apocenter, and returns. Comparison of the linear theory with exact results
indicates good agreement up to radius ratios of about 1.5. Although the transfer
ellipse semi-latus rectum cannot be represented accurately for small transfer
angles, agreement with exact AV calculations is good for angles as small as 25 deg.

Transfer between coplanar circles was analyzed in 207 from the standpoin% of
reducing transfer time without imposing a large AV penalty. Three types of transfer
orbits were considered: tangent to the inner circle, tangent to the outer circle,
and intersecting both circles. It was found that for terminal orbit radius ratics
of 3.0 or greater, transfer orbits tangent to the inner circle are nearly optimal
and provide large reductions in transfer time relative to the Hohmann transfer
without imposing large AV penalties. The proportionate time advantage increases
with increasing radius ratio. If the radius ratio is less than 3.0, the optimum
transfer ellipse intersects both circles.

The great majority of impulsive transfer papers are concerned with minimization
of AV. The problem of minimum-tinme, two-impulse transfer between circular -coplanar
orbits with specified total AV has been considered in 176 and 293. The lowest AV
is that of the Holmann transfer which requires a specific transfer time. If
transfer time is decreased from this value, a two-impulse transfer requires higher
AV (176). If transfer time is increased, an initial (or final) coast should be
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used to achieve the Hohmann AV. Under the assumption that the transfer time is
very small, it was found in 293 that approximately radial impulses result in a
minimum-time transfer, and that the impulses should be almost equal in magnitude.

The case where both transfer time and central angle are fixed results in
optimum transfers involving initial or final coasts (97). For transfer angles
greater than 180 deg, there is a wedge-shaped region in the € vs t plane for which
the Hohmann solution can be achieved using terminal coasts.

—_——— — e —

A logical extension of the Hohmann transfer, the bi-elliptic transfer, is composed
of two, cotangential, transfer ellipses with a common apocenter greater than the
radius of either circular orbit (258, 107, 58). It was the first multi-~impulse solution
to improve on the two-impulse transfer (61). Furthermore, it was shown in 101 that
four- or more-impulse cotangential transfers never improve on the bi-elliptic
transfer.

Inspection of Fig. 5 for transfer to a larger circle (ry/r, > 1.0) reveals that
the Hohmann transfer is sometimes more costly of fuel than escape.

Aveec

/2 -1
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When the limiting case of transfer from the initial circle to a parabola and return on
a second parabola tangent to the final circle was considered, it was discovered that
this "bi-parabolic® transfer through infinity was superior to the Hohmaenn transfer
for radius ratios greater than 11.93876. If, instead of parabolic intermediate
conditions, the common apocenter of two, finite, cotangential, transfer ellipses

is introduced, the maneuver is termed "bi-elliptic” and the ratio of this

apocenter, r;, to the initial orbit radius, ry, is named the “conjunction ratio®
(107). An exterior conjunction includes an intermediate apocenter greater than
elther circle and an interior conjunction involves an apocenter smaller than the
larger circle. In Fig. 6, non-dimensional AV is plotted vs conjunction ratio for
various terminal orbit radius ratios. The dashed curve represents Hohmann transfers
(rp = r;). Lines of constant radius ratio are shown solid for exterior conjunctions,
and by long-short dashes for interior conjunctions. '

If the terminal orbit radius ratio is known, Fig. 6 indicates what conjunction
ratios will result in bi-elliptic transfers superior to the Hohmann for that con-
figuration. Exterior conjunctions are always superior to interior conjunctions.
Thus, each curve originates at a point on the Hohmann line and either decreases or
increases from that AV velue. If it decreases, bi-elliptic transfers result in lower
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“AV's. Using this criterion, Hoelker and Silber calculated the ecritical radius ratios
for which bi-elliptic transfers may be better than Hohmann transfers, If rz/r1 <
11.93876, Hohmann transfers are always superior. If rp/r; > 15.58172, bi-elliptic
transfers are always superior for conjunction ratios greater than 1.0. Between the
two limiting values, the conjunction ratio must be steadily increased from 1.0, at
rg/ry = 15.58172, to « at 11.93876, to make the bi-elliptic transfer equal to the
Hohmann. '

Noncoplanar Orbits

Two- Impulse

The first treatment of noncoplanar circular orbit transfer (115) was restricted
to include only two impulses, both applied at apses. These assumptions required that
the impulses also be nodal, and the optimizing parameter was the plane change split
between the two impulses. It was found that most of the plane change should be made
at the outer radius. The immer impulse never includes a plane change of more than
6.0 deg. Consequently the advantage of splitting the plane change between the two
impulses is small (never more than 3.0% of inmer circular speed) compared to making
the entire change at the outer radius.

These results were verified and extended in 9, where it was assumed that the
impulses are at the nodes. Although this assumption does not require that the
projection of the transfer orbit be cotangentiel, it was shown in 9 that this
projection should indeed be cotangential with the circular orbits at the apses.

Analytical expressions for the plane change split were obtained by series expansion
in 9. '

Ihree-Tmpulse

A three-impulse transfer between noncoplanar circles represents a logical extension
of the bi-elliptic transfer in the planar problem. The plane change is split up
into three parts so that each impulse may include a plane change as well as a pericenter
or apocenter change. The impulse is always circumferential, as in the coplanar
transfer. Analyses of the noncoplanar problem appear in 241, 104, 17, and 251. (In
addition, papers which deal with general coaxial orbit transfer usually include the
circular orbit problem as a special case.) The first and third plane changes have
been found to be small regardless of the orbit inclination and radius ratio. In 251,
it is shown that these changes never exceed 5.3 deg. Therefore only a small penalty

in AV is imposed if the entire plane change is made during the intermediate impulse
(241, 104).
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General Results
Only three possible: transfer modes can be optimal for noncoplanar, circular

orbit transfer: three-impulse, two-impulse (referred to as "Generalized Hohmamn" -
195, 196, or "tilted Hohmann" - 10k4), and transfer through infinity. A detailed
discussion of how the choice of the optimum mode can be made is given in 195.
Extensive data on the impulse required and the plane change split appears in 10k,
and information on transfer time appears in 17. The three-impulse transfers
referred to here have all impulses at finite radii, thus differentiating them from
transfers through infinity which also have three-impulses but only two of which
are at finite radii.

In Fig. 7, a complete summary of results for circle-to-circle transfer is
presented in a single diagram. The axis parameters, radius ratio, and inclination
angle between the terminal orbits are sufficient to determine the optimal transfers
completely. The dashed lines are contours of constant total AV/V;l, and the long-
short dashed lines in the three-impulse region are drawn for constant values of the
intermediate apocenter to initial radius ratio, or conjunction ratio. A distinct
region of this parameter space is seen to be occupied by each transfer mode. Data
describing the boundaries between the regions were taken from 196 and the data from
which the curves were drawn were taken from 104 and 17. '

Much of what is known about circle-to-circle transfer can be found in this
diagram. Consider first the region of transfers through infinity. If orbit
inclination exceeds 60.185 deg (195), transfers through infinity are optimal for
all radius ratios. Similarly, if the radius ratio is less than 0.08376 (rp/ry =
11.93876), transfers through infinity are optimal regardless of the inclination
angle. The limiting values of AV are /2-1 when r, /r, = 0, and 2(/2-1) when
ry/r, = 1.0. The former represents escape (r, = ), and the latter represents
escape and return to the same radius. Since the entire plane change is made at
infinity by an infinitely small impulse, AV is not a function of inclination angle
in this region.

It is apparent that three-impulse transfers are optimal only'for rather large
inclination angles and/or for radius ratios close to 1.0 (241). The conjunction
ratio varies froma value of 1.0 in the lower right-hand corner to « on most of
the boundary with transfers through infinity. Along the boundary with generalized
Hohmann transfers, the intermediate apocenter is identical with the final orbit
radius. Another interesting phenomenon which was pointed out in 10k is that,
for inclinations greater than about 45 deg, the slope of the AV contours is always
negative. Thus, for a given inclination, AV decreases as radius ratio decreases
from 1.0. It is actually easier to get to a more distant orbit than to a nearby

one!
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The generalized Hohmann region occupiles the domain of most practically inter-
esting transfers. TFor radius ratios between 0.1 and 1.0 and inclinations of 10
deg or less, virtually all optimum transfers are of the Hohmann type. It is inter-
esting that, at zero inclination, only generalized Hohmann and transfers through
infinity are optimal, whereas, for r;/r, = 1.0 and i # O, only three-impulse and
transfers through infinity can be optimal.

Three regions of this diagram have been studied extensively in the literature:
(1) i =0, (2) ry/ry = 1.0, and (3) the region in the lower right corner where i
is small and rl/r2 is near 1.0. The first of these was discussed in a preceding
paragraph of this section. The equal-orbit case has been analyzed in 239, 295,
and 291, with the primary results being that three-impulse transfer are always
optimal for i < 60.185 deg and transfers through infinity are optimal for larger
inclinations. At the boundary between transfers through infinity and three-impulse
transfers (when r, /r, = 1.0, 1 = 60.185 deg) two discrete solutions exist with
equal AV (61). One is the transfer with r,/r; = =. The other is the three-impulse
transfer with ri/r1 Z 10.0. Transfer between neighboring orbits has been treated
in 200, 81, and 62, and results for the special case of neighboring circular orbits
are most easily deduced from the presentation in 62.

As a further point of interest, note that there is one point in Fig. 7

(ry/rs = 0.1505, Ai = 37.54 deg) for which all three transfer modes yield identical
values of AV (196).

Circle-to-Ellipse Transfer

Coplanar Orbits

There are three possible configurations of the orbits for coplanar circle-to-
ellipse transfer. Two of these involve nonintersecting orbits: (a) ellipse entirely
within circle and (b) circle entirely within ellipse. The third is: (c) intersecting
orbits. In all cases tangential, apsidal impulses are used to effect optimal
transfers (215, 237). (However if departure from (or arrival at) an apse of the
ellipse is not possible for some reason, the transfer orbit should not be tangent at
the ellipse (50); indeed in some cases it cannot be.)

One-Impulse

A one-impulse transfer can be made only if the orbits intersect or are tangent,
and tangency can occur only at an apse of the ellipse. It has been shown that for
interesecting orbits a one-impulse transfer is never more economical of AV than a two-
impulse (Hohmann) transfer (237, 66). 1If the orbits are tangent, either at apocenter
or‘pericenter, AV's required by one- and two-impulse transfers are equal (237, ll3)f
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Therefore, a one-impulse transfer is never superior to a two-impulse transfer between
a circle and a coplanar ellipse.

—— e — —

Two-impulse transfers are always of the Hohmann type so that, for each of the
three configurations listed above, there are two candidate transfer orbits. In case
(a) the optimum transfer orbit (Fig. 8a) connects the circle to pericenter of the

ellipse (215, 50, 113). In case (b) the apocenter of the ellipse is used (240, 50,
259, et al). ’

A general rule describing the nature of the optimal transfer orbit for non-
intersecting orbits was proposed in 113. The optimal transfer orbit always connecis
the higher apocenter and the lower pericenter. It is apparent that the impulses will
both be forward (in support of the motion) to go to a larger orbit, and backward
(opposing the motion) to go to a smaller orbit (237).

When the orbits intersect, case (c), the transfer comnects the circle to the

apocenter of the ellipse (113), as shown in Fig. 8c. In this case one of the impulses
is forward and one is backward (237).

—— e - —

A geheral treatment of coplanar circle-to-ellipse transfer is provided in 213,
wherein necessary conditions for a minimum-AV transfer are applied and numerical
results are expressed in a summary diagram of all such transfers. The optimality of
tangential, apsidal impulses was confirmed in 213 and 299, and the transfers were

found to include two types: +two-impulse (Hohmann) transfers, and transfers through
infinity.

A summary of all such transfers is provided in Fig. 9 which was taken from 299.
In this diagram the origin represents the initial circular orbit and the coordinate
axes are functions of the ratios of the final orbit pericenter and apocenter distances
to the initial orbit radius which is assumed equal to 1.0,

In the shaded regions transfers through infinity are optimal and everywhere
else a Hohmann transfer (of the appropriate type as discussed above) should be used.
The arrows denote the proper sequence of impulses. For example, to transfer from the
circle to an ellipse with /P, = 0.432 and /A; = 0.452 (this transfer is of type (a)),
the first impulse results in a periéenter decrease to /P = 0.432, but no apoéenter
change. At /P = 0.432 an apocenter decrease is made to /A = 0.452, with no pericenter
change. Thus two apsidal impulses, the first at apocenter and the second at
pericenter, result in the proper transfer. '
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Noncoplanar Orbits

Unlike the noncoplanar circle-to-circle or coplanar circle-to-ellipse problems,
noncoplanar circle-to-ellipse transfer is not a special case of coaxial orbit
transfer because the line of nodes and the major axes of the orbits need not be
coincident. This complication makes the noncoplanar circle-to-ellipse case con-
siderably more difficult to treat analytically. Consequently, the problem has received
less attention than coaxisl transfer, and no completely general conclusions can be
drawn concerning the nature of the solutions.

Two numerical studies of two-impulse transfers have been performed, each for a
particular pair of terminal orbits at a prescribed orientation. The special case
where the line of mnodes is coincident with the latus rectum of the ellipse is con-
sidered in 56. Results are presented for a range of terminal ellipse eccentricities
and orbit inclinations, with the circular orbit assumed to be entirely within the
ellipse. The data indicate that transfer angles should not exceed 180 deg for time-
open transfers. The transfer ellipse is entered Jjust before its pericenter, and
pericenter passage on this ellipse occurs from O to 90 deg before pericenter of the
terminal ellipse. The final orbit is always entered near a node.

A detailed study of a different case appears in 37. Semimajor axis of the
ellipse was assumed equal to the circular orbit radius, eccentricity and inclination
were Tixed at 0.3 and 20 deg, respectively, and the angle between the ascending node
and pericenter point was 30 deg. Although the results of this numerical study are
complex, some tentative conclusions were drawn which may or may not be characteristic
of all noncoplanar circle-to-ellipse transfers.

Tt was found that minimum-impulse transfers do not originate from (or terminate
at) an apse of the ellipse, but that arrival should always be at or near a nodal point.
These conclusions are in agreement with the results of 56. As would be expected, AV
increased with inclination, although size and shape of the transfer orbit were
insensitive to variations in inclination. Both AV and transfer time were found to
decrease when eccentricity of the ellipse was decreased.

In a recent study (35), transfer between a circle and a nearby, noncoplanar,
elliptic orbit was considered. Although the specific orbit configuration is circle-
to-ellipse transfer, the analysis applies to the special category of neighboring
orbits, considered elsewhere herein. What 1s of importance is that, while most
optimal transfers involve two impulses, some optimal three-impulse transfers do

exist. Thus, it is possible that three-impulse transfers are also optimal in the
general circle-to-ellipse case.

Another indication that three-impulse transfers exist in the general problem
is provided by study of the coaxial case. In 105 and 299, coaxial circle-to-
ellipse transfers utilizing two or three impulses were studied. Depending on orbit
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geometry, optimal two- and three-impulse transfers were found, as well as transfers
through infinity. (Similar solutions in 35 are referred to as the nodal type) .

Coaxial Ellipse Transfer

The problem of optimal, time-open transfer between coaxial, elliptical orbits
has received considerable attention because it is a special case of elliptic orbit
transfer which can be solved. Nevertheless, neither the problem nor its sclution is
trivial and the results provide some insight into the general case. Coaxial ellipses
are defined as ellipses whose major axes are co-linear, either aligned (pericenters on
the same side) or opposing (pericenters on opposite sides).

The major axes are not equal, although this special case is not trivial when

the orbits are noncoplanar. Coplanar, coaxial orbit transfer will be considered
first.

Coplanar Orbits

If it is assumed that the coplanar, coaxial orbit transfer be performed by two
impulses, some simple, predictable results are obtained. The optimum transfers are
always of the Hohmann type, i.e., with tangential impulses applied at opposing apses.
However, there are always two possible transfer ellipses, as shown in Fig. 10. Early
investigators, e.g. 260, suggested numerical calculation of AV, and direct comparison
to determine the better choice. It was subsequently discovered that when the axes are
aligned it is always better to use the transfer which includes the most distant apse
as one terminal point and the opposing pericenter as the other (Type I in Fig. 10a).
This result was obtained in 237 for the case of equal-~eccentricity ellipses, and for
arbitrary, coplanar, coaxial ellipses with axes aligned, in 170, 192, 193, and 299.
The generalization was extended in 170 to cover the case of intersecting orbits,
regardless of axis orientation. If the axes are opposed and the orbits are non-
intersecting, neither transfer ellipse can be excluded because, depending on the
eccentricities of the orbits, either type can have the lower AV.

Recent work (192, 199, 193, 299) has added another transfer mode which is
often optimal for coplanar, coaxial orbit transfer. Following Marchal (192) this
transfer is referred to as transfer through infinity. As seen in Fig. 11, there
are two finite tangential impulses, applied at the pericenters of the terminal

orbits, and one or more impulses of negligibly small magnitude applied at an infinite
distance to comnect the parabolic transfer orbits.

Considerable analytical work has been done by Marchal (192, 193, 196) to derive
conditions which predict the optimum transfer mode for various coaxial orbit con-
figurations. The results are summarized in the following paragraphs. Winn has
computed AV's for optimal coaxial transfers (299, 300, 301) and provided diagrams
summarizing the results of these calculations.
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Axes Aligned
In this case the following conditions apply whether or not the orbits intersect.
If P,/P, > 11.938: +transfer is through infinity

If 9.0 < Pg/P1 < 11.938: transfer is either through infinity or Hohmann,
depending on the magnitudes of P,/P, and the
larger of A, and A,.

If P,/P, < 9.0: transfer is always Hohmann using the larger
of A; and A,.

A single diagram (taken from 192) suffices to summarize the regions in which
transfers through infinity and Hohmenn transfers are optimal. If the orbits are
tangent, the transfer is always by a single impulse if the tangency point is at
the pericenters, and may be either through infinity or by one-impulse if the
tangency point is at the apocenters (193). In the latter case, Fig. 11 can be
used to determine whether the transfer through infinity is the proper choice.

Three transfer modes are possible when the axes of the terminal orbits are
opposed:

1. Through infinity
2. Two-impulse, apocenter-apocenter
3. Two-impulse, pericenter-pericenter

It was shown in 237 that if the terminal eccentricities are equal, the progression of

transfer modes is pericenter-pericenter, apocenter-apocenter, pericenter-pericenter
as the ratio a; /ap increases from O to a value greater than 10.0.

—— —— — — — —— q— — oo

When the orbits intersect and the axes are opposed, the pericenter-pericenter
transfer is never optimal. Some conditions which help in determining the optimal
transfer mode have been derived by Marchal (192, 193, 196).

If e;, e; = 0.5: transfer is apocenter-apocenter

If e + ep > 1.07067: +transfer is never apocenter-apocenter

If e, eg > 0.5 and e; + e, < 1.07067: transfer can be either through
infinity or apocenter-apocenter

If e, + eg < 0.845 + 0.31 « min (P,, P,): transfer is apocenter-apocenter.
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For nonintersecting ellipses with axes opposed a convenient diagram which can
be used to determine the optimal transfer mode has been conceived by Marchal (196).
This diagram, reproduced herein as Fig. 12, is divided into five regions, in each of
which conditions on P, /P, and P, /A determine which of the three transfer modes is
optimal. If x =P, /P, y = Pl/Ai, and the ordinate refers to e ither of these, then
the following conditions apply:

x in Zone I or II: +transfer is apocenter-gpocenter

y in Zone I: transfer is apocenter-apocenter
x in Zone III: ¥y in Zone ITI: transfer is apocenter-apocenter, or
: pericenter-pericenter
y in Zone III: +transfer is pericenter-pericenter

y in Zone I: transfer is through infinity or apocenter-
X in Zone IV: apocenter
¥y in Zone II, III, IV: +transfer is through infinity

X in Zone V: transfer is through infinity

The equations of the curves in Fig. 12 are given in 196. Some concise results which
summarize the conditions in the diagram are as follows:

If e + ez > 1.024k: the transfer is ‘l:hrough- infi,nity
If e, > 3e,/(3 + ez): the transfer is never apocenter-apocenter
If ep > 1.726 e, /(1 + e,): the transfer is never pericenter-pericenter
If A /Py < 8.7967: +the transfer is never through infinity
(The first orbit is assumed to be the smaller; i.e., P, <A <P, < A,.)

Tangent Orbits

The orbits must be tangent at one apocenter and at the other pericenter.
Bither a transfer through infinity or a one-impulse transfer is possible. The two-~-
impulse transfers in the intersecting and nonintersecting cases degenerate to one-
impulse transfers when the orbits are tangent. An equation which describes the
condition for which the two types yleld equal AV is provided in 193. -
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/2(l+eg) = 1 fj%§:j o 1 -
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where P, /P, < 1, and A, = P,.

It PI/PB is larger than the value predicted by this equation for a given ez, a
one-impulse transfer is optimal.

Noncoplanar Orbits

As in the coplanar problem, all impulses should be apsidal and circumferential
(but not tangential if there is an out-of-plane component). A basic difference
between coplanar and noncoplanar transfers lies in the existence of optimal, finite,
three-impulse transfers in the noncoplanar case (192, 299). Three transfer types
occur: Hohmann-type two-impulse, finite three-impulse, and three- or four-impulse
transfers "through infinity", in which only two impulses are finite. All three
types occur whether the axes are aligned or opposed. More than three finite
impulses are never used (299). In a transfer through infinity the entire plane
change is always made at infinity with negligible AV expense, so that the total
AV expense for all such transfers is identical to that in the two-dimensional case.
Fractioning of the plane change among the impulse points for the Hohmann and finite
three-impulse transfers, as well as the location of the intermediate impulse in the
latter case, must be determined. ‘

Axes Aligned

When the axes are aligned it is possible to show the boundaries which
separate regions describing the optimal type of transfer between given orbits in
terms of three parameters (192, 195, 196): inclination of the orbit planes, i,;
the ratio of the minimum to maximum pericenter radius, min (P, P, )/max (P, Py);
and the ratio of the minimum pericenter to the maximum apocenter radius, min (Pl,
P,)/max (A, Ay). Figure 13 shows the diagram presented in 196 to summarize
transfers between aligned, coaxial orbits. Important points on the boundary curves
can be located from the data in Table IT. Optimal transfer modes in each region
of Fig. 13 are described in Table III. Following Marchal (196) the three-
dimensional Hohmann-type transfers will be called "Generalized Hohmann" solutions.

The Generaglized Holmann transfers always conmnect the higher apocenter and the

opposite pericenter. When three-impulse transfers are optimal, the intermediate
ellipses are also coaxial and the common apocenter glways exceeds the apocenter of
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either the initial or final orbit. The transfer orbits are joined to the terminal
orbits at their pericenters, the first impulse always being an acceleration and

the third a deceleration. Most of the plane change is effected at the common
apocenter. In 195 it is shown that the intermediate inclination change is always
at least 73.8% of the total change. Therefore, the assumption that all plane
change be performed at this intermediate point does not affect the results
significantly (106). Several important facts about noncoplanar, coaxial orbit
transfer can be deduced from Fig. 13 and Table ITII. TFirst of all, note that for
inclination angles greater than a certain value (60.185 deg) only transfers

through infinity are optimal, whereas for an inclination angle of zero, Generalized
Hohmann transfers are used unless p < 0.28942 (which corresponds to P,/P; = 11.938).
As was found in the coplanar case, transfers through infinity are optimal for
pericenter ratios greater than 11.938.

The boundaries EKJB and E, IC separate regions of "all through infinity" from
"never through infinity" solutions. Above FEKJB the transfer through infinity
is never optimal, below E IC it is always optimal, and in the intervening region
it may be optimal. The special case, e, or e; ~ 1.0 (but not both Z 1.0), was
studied in 192, 195, and 196. It was shown that three-impulse transfers are
never optimal when one of the eccentricities is near unity. Since this condition
usually results in a very small value for p, it is clear from Fig. 13 that a
transfer through infinity is often optimal. However, Generalized Hohmann transfers
are also possible.

The optimal transfer modes in each of the regions of Fig. 13 are summarized
in Table ITI. Depending on the locations of the ends M and N of the vectors p = OM
and o = ON, the optimal transfer mode can often be determined exactly, and can
usually be restricted to two of the three possible transfer types. '

As an example of the utility of Fig. 13, consider the case of transfer from
a low-altitude, circular, parking orbit in the plane of an Earth surface launch
site to a stationary, equatorial orbit. If the initial orbit altitude is 100 n mi,
and the final orbit altitude is 19,0&0 n mi; then the required parameters are
calculated as follows:

_,\/ﬁlin (P, P2) _ /hobO 0.2

P " mex (P, By) 'V 23000

5 =Jmin (B, Bp) _ /h0O60 0.2
max (A, , Ay) 23000 ,
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For a launch from the Atlantic Missile Range the initial orbit inclination is

28 deg. With this inclination angle iy, and the above values for p and o, it is
apparent in Fig. 13 that the Generalized Hohmann transfer is optimal (Point F).

On the other hand, launch from a higher latitude, e.g., a launch site in the Soviet

Union, with latltude 60 deg, places the transfer in the “through infinity" region
(p01nt ).

. Numerical data concerning AV of noncoplanar coaxial transfers is provided in
301 for a range of inclinations and initial orbit eccentricities. The special case
where one orbit is circular is treated in 105. The diagrams of 301 show the trend
toward transfers through infinity and away from three-impulse transfers as in-
clination approaches 60 deg.

Axes Opposed

Considerably less is known when the axes of noncoplanar, coaxial orbits are
opposed. The same three classes of optimal transfer can occur; however, their
characters are altered somewhat due to the different orientation. The Generalized
Hohmann transfer is either from apocenter to apocenter or from pericenter to
pericenter. The three-impulse transfer is either from one pericenter to the opposite
apocenter, or vice versa. The transfer through infinity is a four-impulse transfer
with two finite and two infinitesimal impulses.

The pericenter-pericenter transfer of the Generalized Hohmann type can occur
only if the condition min(Ai, AQ) < max(Pg, Pe)is satisfied, i.e., if the larger
pericenter distance exceeds the smaller apocenter distance. When a three-impulse
transfer is optimal, the path may be one of two types: (1) from one pericenter to
an intermediate apocenter higher than the apocenter of the initial orbit, and then
to the apocenter of the final orbit, or (2) from one apocenter to an apocenter
higher than the final orbit apocenter, and then to the perlcenter of the final
orbit (195).

A useful result for transfers through infinity is that if such a transfer is
optimal for aligned, coaxial orbits, a transfer through infinity is also optimal
for the same orbits when their axes are opposed (195). The transfer through infinity

is not optimal if cos i,/2 = 1/6® [V2 - (1 - (3/4) &) /2(1 + ¢°)].
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Special Cases

Congruent Orbits

Coplanar_

Transfer between two congruent coplanar ellipses is a problem first treated by
Iawden (152), who used arguments of symmetry to arrive at the optimum two-impulse
solution. Although the optimal solution cannot be obtained in closed form the
equations are not difficult to solve numerically and results appear in several
papers (237, 170, 195). An egpecially good summary of transfer orbit data is
presented in 170, and data describing true anomaly of the impulse point can be
found in 56. The symmetric solution was shown to be optimum in 81, wherein it was
also determined that the symmetric transfer ellipse is the limiting member of an
entire family of coplanar transfer orbits.

Since the congruent orbits always intersect in the coplanar case, a one-impulse
transfer is possible, but it has been shown that the one-impulse transfer never
improves on the symmetric two-impulse solution (152, 237). Transfers through infinity
are sometimes optimal, however. The boundary separating two-impulse and through
infinity solutions was described in 195 and 196 and is shown in Fig. lh, g diagram which
summarizes optimal, coplanar, congruent orbit transfers. The ordinate in Fig. 14 is
eccentricity of the initial and final orbits, and the abscissa is the angle between
their pericenters. Contours of constant AV nonmalized'by¢l¢?ao are shown as dashed
lines meeting at the boundary which separates the two transfer modes.

Tt is apparent from Fig. 14 that the two-impulse symmetric solution is always
optimal below an eccentricity of 0.53533 (196). The AV for transfer through infinity
is independent of the rotation angle. Its magnitude is such that this mode is never
optimal for small rotation angles,as seen on the diagram. It was pointed out in
61 that the transfer through infinity between congruent ellipses is a case where
the number of impulses exceeds the maximum number permitted in the linearized case.
This fact suggests that multiple~impulse transfers hold promise in nonlinear orbit
transfer problems.:

When the congruent orbits are noncoplanar their configuration can take
many forms, depending on the orientation of the line of nodes. Three different
configurations, depicted in Fig. 15, have been treated in the literature. In each
case, the view in which the line of nodes appears as a pbint is also shown. The
orbits are designated by the letter O with subscript T for transfer and 1 or 2 for
the initial or final orbit, and the impulses are designated by p.
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The configuration for which the line of nodes is perpendicular to the axis of
symmetry (bisector of the angle formed by the major axes in Fig. 15a) was analyzed
in 54 assuming the transfer orbit was symmetric, as in the sketch. The analysis was
carried to the point vhere solution of two simultaneous equations in two unknowns
‘describes a two-impulse transfer. Although no conclusions or numerical data were
presented in 54, a special case of this configuration, in which the angle w in
Fig. 151 is zefo, was treated in detail in 56.

Both one- and two-impulse transfers were considered in 56 and it was concluded
that one-impulse transfers are superior only if the eccentricity of the initial and
final orbits is small. Details of the symmetric two-impulse solution, including
graphs of true anomaly of the impulse point and total AV, plotted against orbit
inclination, were presented. However, these symetric solutions are probably not
the optimal two-impulse solution as indicated by the limiting case of 180-deg
inclination, which can be improved upon. A one-impulse solution is superior in

the range bounded by an eccentricity of 0.38 when i = 180 deg, decreasing to 0.0
when i = O deg.

In the configuration depicted in Fig. 15b, the line of nodes is coincident with
the axis of symmetry. The transfer shown is the three-impulse symmetric solution
described in 55. In that study, the three-impulse solution was compared with one-
and two-impulse transfers and a transfer through infinity. (All plane change in
the latter case is made at infinity with negligible AV expense.) Numerical data on
the three-impulse transfer are given in 55 for an orbit eccentricity of 0.6,
rotation angles, w, from O to 45 deg, and inclination angles, i, from O to 60 deg.
True anomaly of the impulse points and total AV are plotted againét inclination.

It is shown in 55 that one-impulse transfers are optimal only for small
angles, w, and inclinations between O and approximately 55 deg. TFor small in-
clinations, two impulses are optimal (unless w is also small). Three-impulse
transfers are optimal for inclinations from about 15 deg to 60 deg, regardless of
w. For inclinations above 60 deg, the transfer through infinity is always optimum.

The configuration shown in Fig. 15c allows the line of nodes to be inclined at
any angle v to the axis of the initial ellipse. A three-impulse mode for this con-
figuration was described in 227 and is indicated in Fig. 15c. The sequence is:
circularize at apocenter of the first ellipse, pg (no plane change); change planes
at the node, ps, (plane change only); and establish the second orbit at its apocenter
ps- If the angle v is 90 deg, the configuration is the same as that depicted in
Fig. 15a. However, either a one-impulse transfer or the two-impulse symmetric
transfer described in connection with that configuration appears to be superior to
the three-impulse mode of 227.
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If the angle v is different from 90 deg, the AV requirement of the three-impulse
mode is unchanged, but the one-impulse AV decreases. Curves are presented in 227
showing the benefit of the three-impulse mode over a one-impulse transfer for various
values of the angle v. No two-impulse data are available for such configurations.

All the configurations in Fig. 15 become identical if the orbits are circular
since in this case the major axes are undefined. The case of transfer between equal
but inclined circles is covered as a special case in the section on circular orbit
transfer. It is shown that two types of optimal solutions are possible, a finite

three-impulse transfer and a transfer through infinity. The latter is optimal only for
inclinations greater than about 60 deg.

Neighboring Orbits

Transfer between neighboring (or nearby) orbits has received considerable
attention because it is a problem which can be analyzed by small-disturbance theories.
Therefore considerably more has been achieved in the way of analytical results using
linear and second-order models than has been possible in the general case.

There is a theorem (224, 265) which states that the number of impulses in a
linearized problem never exceeds the number of state variables specified at the
final condition. Thus, orbit transfer may require as many as five impulses in three
dimensions, or three impulses in a coplanar problem. The theorem applies only
within the linear approximation and is violated (61) by some optimal nonlinear
transfers, e.g., the transfer through infinity between congruent ellipses, (192).

A geometrical interpretation of optimal impulsive transfer between coplanar,
nearby orbits, first presented in 45, shows that in a state space composed -of small
changes in energy, angular momentum, and argument of pericenter, the set of reachable
states describes a three-dimensional spool-shaped figure. In 45, Contensou described
the geometric features of the spool and indicated how it could be used to comnstruct
optimum impulsive transfers. Subsequent studies (81, 205) have presented accurate
representation of Contensou's spool showing how it evolves from a single plane
figure for e = 0, to a complex, self-intersecting surface at e close to 1.0.

Small changes in the elements of an orbit may be required for orbit modification
and station-keeping of satellites. Some rules for effecting such changes are ‘
presented in 59 and 66. If individual elements of a near-circular orbit are to be
corrected the following rules apply (59):
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To change:

=t

. major axis - tangential impulses at the apses (Hohmann ellipse)

2. eccentricity - same as 1

3. inclination ~ normal impulse at nodal crossing

4. position in orbit - transfer to slightly different orbit and wait for
moment to return; use tangential impulses

5. argument of the node-normal impulse 90 deg from a node (66)

A good summary of equations for small changes in the elements appears in
Chapter III of 66.

If more than one element is to be changed simultaneously the following optimum
maneuvers apply (59):

To change:

1. major axis and eccentricity - use Hohmann ellipse

2. major axis, eccentricity, and position - if one of the two impulses in 1,
above, is split into two parts, position change can be made without increase
AV

Circle-to-Circle

Optimum two-impulse transfer between neighboring, coplanar, circular orbits with
central angle fixed was considered in 143. In this formulation, flight path angle
and radial and circumferential components of velocity at the impulse points were used
as parameters. BEqual flight path angles at the impulse points was shown to result in
a stationary solution, to first order in rg/rl - 1. Results for AV show good
correlations with exact results, even for moderate orbit separations.

It has been shown in 290 that for this same problem, without linearization, an
eighth-degree equation in the semi-latus rectum, %4, of the transfer orbit must be
solved to define the optimum two-impulse solution. However, a Taylor series expansion
in rs/r; - 1 results in closed-form solutions for both £ and AV in terms of radius
ratio and central angle, if only the linear terms are retained. Comparisons with
exact numerical results in 290 indicate that the linear theory accurately represents
AV up to rz/xi ~ 1.5, and that accuracy is poorest for small central angles, regard-
less of rg/rl. These results agree with those obtained in 143. Improvementé obtained
by inclusion of second-order terms in the expansion are also presented in 290.

Another important linearized analysis was carried out in 238. 1In that study
optimal two-, three- and four-impulse solutions to the problem of fixed-time
rendezvous between coplanar, circular orbits were obtained using Iawden's primer
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vector theory. The results obtained in 238 are described under the category of
Rendezvous. It dis significant that the use of a linear approximation permits
solution of a complex problem such as fixed-time rendezvous. The importance of
linearization lies in the fact that it results in separation of the state and adjoint
differential equations, thereby permitting determination of the form of the optimal
control separately from solution of the two-point boundary value problem posed by
the state equations.

Small-Eccentricity Orbits
Most studies of neighboring orbit transfer in the literature have dealt with
the case of small-eccentricity orbits. The reason for this concentration of effort
is that while linearization can be performed about an orbit of any eccentricity,
" linearization about a circular orbit results in the simplest analytical form of the
governing equations.

Transfer between neighboring, coplanar, small-eccentricity ellipses was studied
in 147, wherein closed-form solutions for AV were obtained by series expansion in
Ar/r1 . Two transfer modes were discovered whose use depends on whether or not the
orbits intersect.  If the orbits do not intersect, all impulses are tangential and
may be either accelerating (for outward transfers) or decelerating (for inward transfers).
The number of impulses used is arbitrary except that at least two are necessary.

Thus a two-impulse transfer always suffices. (A higher-order theory would resolve
the question of how many impulses, but to first order the effect on AV is not
detectable.) Decelerating impulses occur on a radial line in the direction of the
largest change in radius during the transfer, as defined in 147. Accelerations are
applied 180 deg from this line. (These transfers are referred to as "spiral-limited"
in 81.)

For intersecting orbits, tangential impulses are again optimal, but they are
alternately accelerations or decelerations. The decelerations occur on a line in
the direction of maximum change in radius, and the accelerations, 180 deg away. Only
two impulses can be applied per revolution and the first impulse may be of either
type. (These transfers are referred to as "symmetric-limited" in 81.)

Noncoplanar

The noncoplanar, neighboring orbit transfer problem has been solved in 200, 81,
62, and 301. Although the methods used in these studies are slightly different the
same results are obtained. It has been shown that transfers with more than two
impulses are not required in this linearized problem (200), and that two nondegenerate
transfer modes exist. The first of these is a "nodal" (62) transfer with two nodal
impulses (180 deg apart). The second is a general two-impulse mode for which symmetry
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~does exist, but for which the impulses are in general neither nodal nor apsidal.
A singular (81) or degenerate (200) mode also exists for which thrust direction is
defined everywhere, but for which the location of the impulses is arbitrary (62).
This mode also admits nonimpulsive thrusts, but two-impulse transfers are not
improved upon by inclusion of additional impulses or other thrusting periods. The
extension of these results to time-open rendezvous is considered in 201.

A number of useful summary diagrams are presented in 62 to describe all such
linear transfers in terms of increments in the orbital elements. Nondegeneraste
two-impulse transfers are the most prevalent type. Some three-dimensional primer
locus diagrams are also presented in 62 to differentiate the solution modes.

The existence of optimizing three-impulse solutions has been demonstrated by
higher-order theories in 200 and 35. In 200 the linearization is performed about a
noncircular (small eccentricity) orbit and the degeneracy of the singular solutions
disappears. One-, two-, and three-impulse solutions take their place. Transfer
between a circle and a nearby ellipse was considered in 35, wherein a second-order
theory was developed and a special "transition" analysis was performed near the
boundary of the singular solutions. Two-impulse nodal and nondegenerate solutions
occur in the second-order model, the large impulse always preceding the smaller in
going from the circle to the ellipse. It is interesting that in the nonlinear case,
three-impulse transfers occupy a considerable region of the parameter space (35).

— e g i e e g g —

Although optimizing four-impulse transfers have not been found in any non-
linear orbit transfer problems (except those transfers involving parabolic arcs)
a linearized study of fixed-time transfers between neighboring coplanar orbits
(302) has revealed the existence of such solutions. In a sense, the analysis of

302 overlaps rendezvous because of the equivalence of time and central angle in
the linearized case.

Linearization is performed about an orbit of arbitrary eccentricity in 302 so
that near circularity is not an assumption of the analysis, although departure from
the initial orbit. is always assumed to be at pericenter. Data for nominal eccentricities
from O < e, < 0.7 are presented in 302. Transfer angles up to 540 deg and as low as
180 deg or less were found to result in minimizing solutions. In the e, = O case,
the second and third impulses became symmetric with respect to the first and fourth
impulses. Thus, for short times, the four-impulse transfer becomes a two-impulse
transfer. When e, = O and the time is short, the third and fourth impulses merge,
producing & three-impulse transfer.
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Cotangential Transfer

Cotangential transfer is a transfer in which orbits are joined at tangency
points by tangential impulses. Only the magnitude of the velocity vector is
changed in such a maneuver and therefore only coplanar transfers are possible.
Although this definition does not preclude three- or more-impulse transfers, only
one-~ and two-impulse transfers have been studied. The first application of a
cotangential transfer was the Hohmann transfer (109) between circular orbits.
Some time later, Lawden (153) observed that tangential impulses give near-optimum
performance when the orbits are elliptical, and more recently general studies of
orbit transfer (192, 193, 212) have placed well-defined limits on the angle between
the thrust and velocity vectors, thus demonstrating the near optimality of co-
tangential transfer for a wide class of problems. Hyperbolic terminal orbits
(296) and free-orientation ellipses (51) have also been treated but these cases
are covered elsewhere in this report.

— e T mt” p— — — — —

The condition that the transfer orbit be tangent to both the initial and
final orbits restricts the class of potential transfer orbits. The condition can
be applied in various ways (153, 296, 66, 2k, 287, 148, 214). Although for the
time-open case such orbits can always be found, cotangential transfer is not
always possible when time is fixed (153).

If the terminal orbits intersect, the vacant focus of the transfer orbit (288)
and the tangency points (153) describe a hyperbolic locus. The transfer orbit may
be elliptical, parabolic, or hyperbolic (296). For nonintersecting orbits, the locus

of the tangency points (153) and the vacant focus (288) is an ellipse and. the transfer
orbit is also an ellipse (296).

No completely analytic solutions have been derived for arbitrary terminal orbits
but the equations can be reduced to a relatively simple form for numerical studies
(214). Data presented in 24 indicates that AV is quite sensitive to departure point
when the terminal orbits intersect, but that it is insensitive for nonintersecting

orbits. However, these observations are based on a few numerical cases and are not
conclusive. '

The case of nearly tangent, coplanar ellipses has been studied in 26, 27, 28,
and 204 to determine whether one-impulse transfers can be optimal for "shallowly
intersecting" orbits. Data presented in 28 indicate that one-impulse transfers can
be superior to two-impulse transfers but that the superiority exists in a very

‘narrow range of orbit orientations near tangency. This narrow region was also noted
in 45, 193, et al. ’
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Cotangential transfers are truly optimizing only if the orbits are coaxial.
Since that includes circular orbits it is not surprising that the agsumption of small
eccentricities leads to near-optimal cotangential transfers (153, 260, 214, 288, 287).

Furthermore, the impulse points are very nearly apsidal on the transfer ellipse (153,
288).

Tt was shown in 288 that, even if only one orbit has a small eccentricity,
cotangential transfer is near-optimal. If both orbits have eccentricities lesg than
0.2, cotangential AV's are only 1% greater than the optimum (214).

Ascent

Ascent to orbit is not usually treated as an impulsive transfer problem because
the launch phase cannot generally be compressed into a short enough time span relative
to the total time of ascent to warrant assumption of impulsive thrusts. Also,
atmospheric effects and staging considerations make the minimization of dmpulsive AV
a questionable criterion in the ascent problem. However, there are some cases for
which impulsive ascent to orbit is meaningful. The results which are summarized in
this section are taken from papers in which ascent to orbit was the intended
application. There are other papers In the sections on disorbit, rendezvous, and
orbit transfer which may also be considered relevant to ascent but they are not
covered here.

There are two basic groupings of the ascent problem, one according to whether
the model is coplanar or noncoplanar, and the other by the nature of the final orbit.
Initial conditions usually consist of a radius and veloclty vector, the latter often
being prescribed as zero. The coplanar case is treated first, with circular,
elliptical, and hyperbolic final orbital conditions taken up in succession. In all
the papers cited, transfer time is unspecified and, in the coplanar case, transfer
angle is always free as well.

Coplanar_

Ascent to Circular Orbit

— v—— — - — — ——_ow— g— - p— —_—
- mwen s v g g oo Gt - o

When transfer angle is left open, the optimum solution consists of a "minimum-
energy" trajectory, i.e., the ellipse of smallest major axis (151). Therefore,
entry into the circular orbit is always tangential. Two impulses generally suffice,
one to enter the transfer ellipse and the second to establish the circular orbit.
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If initial conditions consisting of a radius and velocity vector are assumed,
the optimum transfer orbit is one with apocenﬁer equal to the radius of the final
circle (114). The second impulse is tangential, and the transfer orbit is tangent
to the circle. The magnitude and direction of the first impulse depends on initial
conditions. If the initial speed is zero, it has been shown (12) that s horizontal
impulse is optimal. If the orbit-to-planet radius ratio exceeds 11.94 and the
initial velocity is horizontal (or zero) a three-impulse ascent using tangential
apsidal impulses is optimal (66).

TR ==

If the terminal orbit is an ellipse with unspecified orientation, the results
concerning circular orbits apply, entry into the ellipse occurring at its apocenter
(114). The required number of impulses is not more than three (195). The case of
a two-impulse ascent starting from zero velocity, where the jet speeds of the 1mpulses
are unequal, is treated in 278. The critical parameters are the ratio of the planet
radius to pericenter radius, r; /P, and the ratio of the jet speeds of the first and
the second impulses. If the I,, ratio is less than r, /P, the first impulse is
not horizontal but the apocenter of the transfer ellipse is tangent to the pericenter
of the final orbit. If the I, ratio is greater than rl/P, the transfer ellipse is
of the Hohmann type and both impulses are horizontal. However, the terminal ellipse
may be entered either at apocenter or pericenter depending on its size and shape.

Only circular terminal orbits have been treated in the impulsive, noncoplanar
ascent problem. There are two basic modes of ascent in the time-open noncoplanar
case, direct and indirect. The latter makes use of a "parking" orbit and is referred
to in 66 as "interrupted ascent". A good discussion of the advantages and dis-
advantages of parking orbits, as well as the consequences of nonequatorial launch
from a rotating planet, is provided in Chapters I and III of 66.

In the treatment of direct ascent carried out in 178, fuel is minimized in a
two-impulse ascent in which the first stage is Jjettisoned before orbital injection,
but structural masses. are neglected. The initial condition is zero velocity at the
planet's surface, but planetary rotation is included. The second impulse is always
applied at apocenter of the transfer ellipse. Results show that if the stage I,,
ratio is above a certain value, a horizontal first impulse in the direction of
planetary rotation is optimal. Below this value a vertical launch AV component is-
necessary. If the stage I;;'s are equal, horizontal launch is always optimal. 1t
is of dnterest that fuel consumption is a maximum at a finite radius in this
problem. The reason is that the speed increment required to reach orbit altitude
always increases with altitude, while the speed increment to establish the orbit
decreases with altitude.
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A similar study, performed in 303, considered a two-impulse ascent from the
standpoint of minimum impulse. As in 178, initial conditions were zero velocity
at a prescribed radius, but planetary rotation was neglected. The second impulse
was assumed to be at apocenter of the transfer ellipse. Data are presented in
303 for transfer to various circular orbits as specified by their radius and the
inclination angle between the launch point and the circular orbit plane, measured
along an arc normal to the orbital plane. It is shown that a transfer angle of
90 deg results in the smallest inclination between the transfer orbit and the
circular orbit but that minimum impulse does not occur at this condition.

A complete optimization of the transfer ellipse for two-impulse ascent from a
zero velocity condition, with a nonrotating planet, was performed in 42 and 314.
It was found that entry into the circular orbit at apocenter of the transfer ellipse
is not a good assumption for minimum AV if the radius ratio, ry /rp, is small. When
the initial inclination angle (as defined above) is large, a transfer angle (angle
traversed on the transfer ellipse) of 90 deg is optimal. For zero inclination
the optimum angle is 180 deg, unless r; = ry, in which case 8,5, = T0.529 deg.
Comparison with a nonoptimal three-impulse ascent, in which launch into a circular
parking orbit is followed by an inclined Hohmann transfer, shows that direct two-
impulse ascent is superior for small rp/r,, and inferior if r,/m is large.
Further explanation of these effects can be found in 42 and 314.

Terminal-to-Terminal Transfer

In a sense,; terminal-to-terminal transfer bridges the gap between orbit-to-
orbit transfer and rendezvous. A terminal is merely a specific point on a specific
orbit. Thus, transfer between two termingls is also a transfer between the orbits
which they designate, but it is not generally the optimum transfer between those
orbits because optimum orbit transfer requires selection of the optimal terminals of
arrival and departure. If transfer time is fixed, terminal-to-terminal transfer
becomes identical to rendezvous between bodies which happen to occupy the given
terminals at the appropriate departure and arrival times. Thus, optimal solution of
the terminal-to-terminal transfer problem is a step toward solving associated orbit
transfer and rendezvous problems.

Time-Free

All published results on time-free terminal-to-=terminal transfer involve two-
impulse transfers.
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Coplanar Terminals

In the first study of the coplanar problem (84), a formulation in terms of
chordal and radial components of velocity as parameters resulted in an eleventh-
order equation, but use of hodograph parameters in 6 reduced the solution equation
to eighth order. A real positive root of the octic equation designates the
optimal transfer ellipse.

Three-dimensional formulations of the terminal-to-terminal transfer problem
appear in 272, 7, 17k, and 311. It is concluded in 272 that the apses of the
transfer orbit do not coincide with the terminals, as was also predicted in 8k
for the coplanar case.

The first thorough analysis of the two-impulse case was performed in 1Tk,
and some important resulits were obtalned. Using Stark's approach (263), an
eighth-order polynominal solution equation was derived and extraneous solutions
identified and discarded. ZFrom the real roots it was shown that two relative
minima, can occur in the terminal-to-terminal problem, i.e., there are two different
transfer orbits which are locally minimizing. One of these required a lower AV
and is the absolute optimum; however, if trip time is a consideration and the
secondary optimum entails an appreciably shorter time, it may be the preferable
transfer. Another significant result obtained in 174 is a demonstration of the
existence of hyperbolic transfer orbits in some terminal-to-terminal transfers.
These results were affirmed in 311 under completely general terminal conditiomns,
including retrograde motion during the transfer. Conditions under which motion
in the transfer ellipse opposes that of the terminals are indicated in 311. Also
included in 311 is a thorough analysis of the multiple optima discovered in 17k,

Time-Fixed

Solutions to the time-fixed problem have been obtained only under the assumptions
of a reduced gravitational field. The field-free case was first investigated in 150
and the optimum solution was shown to be impulsive. Further work on the field-free
problem (90, 70) yielded the result that intermediate impulses never reduce AV, i.e.,
only terminal impulses are required. These same results were shown to hold when the
gravity field is uniform in direction and strength (90). Thus two-impulse transfers
suffice in these reduced forms of the problem.

By studying the fixed-time coplanar, terminal-to-terminal problem in terms of
a parameter which measures field strength, the conditions for which terminal impulses
are optimum were derived in 90. A linearized analysis was used so that only small
impulses and neighboring orbits are allowed. Approaching the centrally directed,
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inverse-gquare field case by steadily increasing field strength led to the conclusion
that intermediate impulses do dccur in an inverse-square field. Therefore, multi-
impulse transfers can provide AV reductions for time-fixed terminal-to-terminal
transfer, a result vhich has important implications for orbit rendezvous. Further
evidence of the existence of -multiple-impulse solutions has been demonstrated in 183.

Ellipse-to-Ellipse Transfer

It has only been in recent years that significant progress has been made toward
solution of the time-open, ellipse~to-ellipse transfer problem, and almost all progress
has been confined to the coplanar case. Several concepts which emerged in parallel
studies performed in the USA and in France (45, 34, 192, 193, 212, 81) have con-
tributed to rapid progress in this field.

The first important concept was the use of AV to replace time as an independent
variable in the variational formulation of the optimum transfer problem (45, 3k).
Next came the designation of a "useful angle" (192, 193, 212) within which thrust is
always applied, and the "switching" laws determining the optimal transfer mode.
Categorization of transfer arcs (81), and study of the "maneuverability" (45, 192, 81,
205) as defined in 45 have also contributed to a more thorough understanding of this
basic problem.

Two recent survey papers (195, 196) have compiled extensive documentation of
current knowledge on ellipse-to-ellipse transfer. However, English translations of
- these surveys have not yet appeared. Much of the discussion which follows is based
on the results presented in 192, 193, 195, and 196. The ihterested reader is referred
to these excellent papers for further information and for details of the analyses.

Coplanaxr

The concept of the "useful angle" was first proposed in 192, wherein it was shown
that thrust is always applied in a rather narrow angular range which always lies
between the local horizontal and the local tangent directions (Fig. 16). The useful

angle is always smaller than 12.5 deg and bhas an upper limit ¢,, and a lower limit,
¢y . Only the limiting Vvalues are used when the thrust is impulsive. As shown in

Fig. 16, the useful angle includes both forward and rearward thrust directions. It
is apparent that the limits are 180 deg apart and that no loss of generality results
from considering forward thrust only, the opposite case being understood.

Expressions for ¢, and ¢, have been obtained by series expansions in 192, 193,

195, and 196 for e ~ 0 and e ~1.0(only e is required to designate the orbit since the
ma jor axis does not affect the results). Extensive data on these limits appear
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" in 212 and 47; the latter contains a particularly good summary. Some general
information appears in 195 in the form of bounds on the useful angle, namely:

|¢s - ¢1| < 12.5 deg

l¢s - ¢ ]/v <0.2

|ga | < 26.2 deg

The significance of ¢, and ¢, lies in the fact that they are related to
switching points on a given transfer orbit. At each point, vy, on a given transfer
orbit there is an angle $yq Or @y, which is the optimal thrust direction for an
impulse and, associated with that point, is another point, v,, on the same orbit
with corresponding values, ¢;5 and ¢,,. If the orbit is entered at vy, 1t must
be by an impulse with thrust angle ¢,, or ¢,,, and it must be departed from at
v, by an impulse with thrust angle ¢, or @,5. A complete summary of all angles
@14 and @, and the angles ¢,, and ¢, associated with them appears in LT,
Although there is a continuous change in the "domain of maneuverability" (L5)
with changes in e for most values of e starting from zero, a distinct change in
character occurs at e = 0.925 (193). FPor e < 0.925 there are forward and back-~
ward useful angles for all true anomalies, v. However, for e > 0.925, some
values of v have no useful angles. This is related to the occurence of three-
impulse transfers for high eccentricities.

A switch (or in the terminology of 192, 193, 195, and 196 a "commutation") ¢,
always follows an accelerating impulse and precedes a deceleration (192). A switch
¢, always follows a small acceleration and precedes a larger one (or follows a large
deceleration and precedes a smaller one). It is important to realize that these
angles are defined relative to the transfer or coasting ellipse. When a ¢ switch
applies, the impulses are always on opposite sides of the major axis of the transfer
‘orbit (193). When a ¢, switch applies the impulses are always on the same side. This
effect was noted in 81, wherein the two types of transfer orbits were referred to as
spiral-limited and symmetric-limited transfers because each type is delimited by a
Hohmann-type, 180-deg transfer at one extreme, and a "Iawden spiral" or a "symmetric"
(congruent orbits) transfer, respectively, at the other extreme. It should be pointed
out that the determination of whether or not a particular elliptical arc can be a
segment of an optimal time~open, coplanar trajectory can be made (81). The inverse
problem, namely to determine the optimal arc or arcs which connect two given orbits,
is much more difficult and has yet to be accomplished, except by successive approx-
imation as in 195, or by extensive computation as in 202 and 203.
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Iransfer Modes

There are four possible optimal transfer modes between coplanar ellipses:
one-impulse, two-impulse, three-impulse, and through infinity (192). One-impulse
transfers (no switches) are rare because, (1) the orbits must intersect or be
tangent, and (2) thrust must be within the useful angle with respect to both
orbits (192). When a one-impulse transfer applies it always occurs at the inter-
section closer to the focus (193). A complete study of one-impulse transfers was
conducted in 212 and much useful information is presented there. Since every
segment of a multi-impulse transfer is optimal in itself, the individual impulses
are optimal for transfer between the orbits they join. Thus, optimal one-impulse
transfers are not uncommon. Two-impulse transfers (one switch) are the most
common‘type. If one impulse of a two-impulse transfer is an acceleration, it
is always first. The abbreviations F for a forward (accelerating) thrust and R
for a rearward (decelerating) thrust will be used from this point on. Two-
impulse transfers can be of the FF, FR, and RR types, but RF never occurs.

Three-impulse, time-open transfers with finite radii (two switches) occur
but are rare because some rather limiting conditions must be satisfied for their
optimality. The following conditions must be fulfilled for a three-impulse
transfer to be optimal (193):

( _‘/31.+£E?;>-max<f}?l, fP2> < 0.2873

8q 8

0 < lw2| % 22 deg

2.h 2
25 B, 9

The first condition is equivalent to e, + e, > 1.712. Another useful condition is

that if the ratio max(A,, A )/min(P;, P,) < 21, a three-impulse transfer is never
optimal.

With regard to the sequence of impulses on a three-impulse trajectory, both ¢,-
and ¢ -type switches occur so that one impulse is always different from the other two
(192). 1In fact, the first impulse is always an acceleration and the last is always
a deceleration (193). Thus, types FFR and FRR can occur. A condition which
differentiates these modes is as follows (196): If ale; < aZel, type FRR does not
oceur; if afe] > afel, type FFR never occurs; and if afe, = aZe} neither type of three-
impulse transfer can be optimal.
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Transfers through infinity are always optimal if Pe/]?1 > 11.938 (or Pl/Pg >
11.938). Also, if a transfer through infinity is optimal for coaxial orbits (wb =
O or 180 deg), it is optimal for the same orbits when w, # O or 180 deg.

The preceding discussion concerning the "useful angle" and conditions required
for the various transfer modes applies regardless of the configuration of initial
and final orbits.

Intersecting Orbits

There are two possible cases under the category of intersecting orbits, one in
which the orbits intersect for any orientation, w,, and one in which the orbits
intersect only for a limited range of values of uwp. The always-intersecting case 1is
defined by the expression, A, 2 Ay 2 P, 2 P;. This relationship implies that
e 2 e5. (Since the choice of which orbit is the larger is arbitrary, it will be
assumed that P, = P; always applies.)

It was shown in 195 that three transfer modes can occur: FR, FRR, and through
infinity. If P, > P,, type FRR is replaced by FFR. If e; + 0.579 e = 0.845, the
FR mode is always used, and if 8/9 (/2 - 1) (1 - cos wy) =2 ( 1 - e, )/ep, transfer
through infinity is always used (195). Further information on this case is provided
in 196.

The case where the orbits intersect for some orientations but not for others
is described by Ay =2 A, 2 P, 2P, or A, > A >P; > P;. In the first instance, there
are three possible transfer modes: FR, FRR, and through infinity (192). A test which
helps to determine which is the optimal mode was proposed in 192. This test appears
in Fig. 17. When the test is positive, the two-impulse mode FR is always optimal.

If the test is negative, and if 8/9 (/2 - 1){(1 - cos wy) = (1 ~ e,)/e, as well, the
transfer 1s always through infinity. Otherwise any of the three modes can be optimal,
except that the three-impulse mode can occur only if e; and e; are in the region
above the mixed dashed line in Fig. 17 (193).

The second case, P, < P; < A; < A;, is more general and admits six possible
modes: F, FF, FR, FFR, FRR, and through infinity. In this case, if the test is
positive one of the two-impulse modes is optimal. They must be compared in each
instance to determine the better, as explained in 195. If the test is negative, the
transfer through infinity is used if (/2-1)(1 - cos up) 2 min ((1 - e;)/es, (1-€5)/e ).
Otherwise any of the six modes can occur, except that for the three-impulse mode to
be optimal, e; and e; must be to the right of the dahsed line in Fig. 17 (193). The
data in 212 determine the trace of this curve more precisely. When the three-impulse
mode fulfills these conditions, the choice between FFR and FRR depends upon an
additional condition. If afel < aZel, the FRR mode camnot occur, and if aje] > a2e]
the FFR mode cannot occur (195). As explained previously, when afez= age;,'the
three-impulse mode cannot apply.
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There are three possible transfer modes when the orbits are nonintersecting:
FF, FFR, and through infinity. If the orbits never intersect for any orientation,
i.e., if A, > P, > Ay > P, , then the FFR mode does not occur, and the choice between
FF and through infinity rests on two conditions. If Ag/Pl‘S 8.7967, the FF mode is
used, and if (/2 - 1)(1 - cos w,) 2 min((L - e, )/es, (1L - e )/e;), the transfer
is through infinity (195). Some further conditions on this case are provided in 196.

If the orbits are nonintersecting, but only for certain orientations, all three
modes can occur. A summary of this case appears in Fig. 18 (193). Some further
conditions which were presented in 195 are also helpful. TIf A, + P, = 6.32 P, the
transfer is never three-impulse (FFR), and if AQ/P1 < 8.7967, the transfer is always
two-impulse (FF).

Some general observations concerning transfer between coplanar ellipses have
been made with regard to orbit orientation, w,. It was pointed out in 192 that AV
increases monotonically withIwJ for =180 < Wy = 180 deg. Furthermore, w, varies
monotonically (increasing or decreasing) during a transfer consisting of a succession
of arcs (193). It was observed in 2k, 138, and 193 that AV is very sensitive to changes
in w, for intersecting orbits, but rather insensitive for nonintersecting orbits.

Noncoplanar

Compared to the coplanar case very little in the way of general results can be

listed for noncoplanar transfers. The linearized (see Neighboring Orbits section)
case does not admit more than five impulses, a result which may or may not hold in

the general case. Also, it has been pointed out before that if a transfer through
infinity is optimal for a pair of coplanar orbits it is also optimal when they are
inclined. The existence of optimal one-impulse transfers between certain inclined
orbits was indicated in 203. Two~impulse transfers also exist.

Some numerical methods have been advanced for studying the general ellipse-to-
ellipse transfer problem. The method described in 202 and further documented in
203 appears to handle particular two-impulse problems satisfactorily. The contour
plots presented in these studies provide the only available information of a general
nature on noncoplanar transfers.
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RENDEZVOUS TRAJECTORIES

The term rendezvous has been applied to a variety of problems treated in the
literature, In Fhe sense used herein, a rendezvous problem begins with a vehicle
performing a prescribed motion.as the initial condition and ends with the vehicle
performing a time-related prescribed motion as the final condition. This definition

1s fairly general and encompasses problems in such categories as terminal-phase
rendezvous, orbital rendezvous, and direct launch to rendezvous with an orbiting
spacecraft. Terminal-phase rendezvous 1s specifically concerned with the relative
motion between the target and the rendezvous vehicle. The equations of motion are gen-
erally linearized about the target body and, while impulses can be employed to accom-
plish rendezvous, they are implied rather than explicitly provided for. Further, the
linearized equations of motion are generally restricted to small displacements

about the target. Thus, terminal-phase rendezvous is a subject more closely

related to guildance or navigation than to Impulsive trajectories, and is not
considered here.

Direct launch to orbit encompasses a variety of logistics and operational
considerations such as launch site selection, launch windows, and characteristics
of launch vehicles. Again, the connection with impulsive trajectories is not
close enough to warrant inclusion in this study.

This leaves what is ordinarily referred to as orbital rendezvous as the basic
impulsive trajectory problem in the rendezvous category. General surveys of the
overall rendezvous problem are found in 53, 116, and 289. Haowever, an examination of

these surveys reveals that the vast majority of papers deal with terminal-phase
rendezvous.

Rendezvous time is generally measured from the instant a rendezvous command
is given to the moment rendezvous occurs. As such, it may consist of two parts:
(1) waiting time in the original orbit and (2) actual transfer time. Within orbit
rendezvous it is useful to define three categories or classes of problems: (1)
time-open, (2) time-limited, and (3) time-fixed. The time-open rendezvous problem
places no limit on the total rendezvous time and therefore degenerates to the
problem of optimum orbit transfer with an appropriate waiting period. The time-
limited problem has application whenever the time~-open solution requires an excessive
time and it is desirable to investigate alternative methods of achieving rendezvous
in a reduced time period. Institution of a time limit usually involves a tradeoff
study between AV and t, and consideration of alternative transfer modes. It is not
necessary for a well-defined upper limit on rendezvous time to exist in a time-
limited problem. The rendezvous time is generally a result of the analysis.
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Time-fixed rendezvous is distinguished from the other two categories in '
that the total rendezvous time is specified in advance, and the required result is
the optimum rendezvous path for that time. Use of these time constraint categories
provides a convenient and sensible means of classifying rendezvous problems. This
breakdown is also indicative of the specialigzed areas in which past research has
been applied and leads to a better picture of how future research should be directed.

As pointed out earlier in the section on terminal-to-terminal transfer, rendez-
vous and terminal-to-terminal transfer are closely related problems. If the orbital
positions of the target and pursuer are specified in a rendezvous problem, i.e., 1if
the terminals are prescribed, the results described under terminal-to-terminal trans-
fer apply.

Time-Open Rendezvous

Time-open rendezvous degenerates to the problem of optimum orbit transfer coupled
with an appropriate waiting period 1n the initial orbit. It is shown in 25, 57, and
282 that the minimum expense for rendezvous is equivalent to the minimum AV for time-
open orbit transfer. For the general case it is shown in 25 and 57 that phase angle
or time constraints may be handled by an impulse splitting technigue with no net
expense in AV. For the case of rendezvous between nonintersecting, coplanar orbits
(circle-to-ellipse, ellipse-to-circle, or axially aligned ellipse-to-ellipse), an
expression for the lowest rendezvous time which can be achieved by any scheme which
also minimizes AV is derived in 282. It is also shown in 57 that time-open rendez-
vous provides an upper bound on time for rendezvous between general orbits. For
some configurations the required waiting time to achieve proper phasing for a rendez~
vous which utilizes the opitimum transfer path may become excessive. For example, it
ig shown in 250 that the maximum waiting time for rendezvous between coplanar cir-
cular orbits using the Hohmann transfer path is equal to the synocdic period.

. Time~Limited Rendezvous

Due to the preponderance of information available for the circle-to-circle
rendezvous case and the rather sparse information available for noncircular orbits,
the time-limited rendezvous problem msy be further classified according to the
Initial and final orbit configuration: (1) circle-to-circle and (2) general
orbits. The circle-to-circle category can be further broken down into sections

on coplanar and noncoplanar results, although this is not convenient for the
general orbit class.
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Circle-to-Circle

There are bagically three transfer techniques which have been applied to
rendezvous between circular orbits: (1) Hohmann, (2) bi-elliptic, and (3) semi-
tangential. The Hohmann and bi-elliptic transfers are well known; the semi=-
tangential maneuver utilizes a transfer ellipse tangent to one of the original
orbits, and intersecting, i.e., nontangential to, the other. It is shown in 207
that semitangential transfers tangent to the inner orbit are more economical
in terms of both AV and t for time-fixed transfers between coplanar circular orbits.
Consequently, only semitangential transfers tangent to the inner orbit need be con
gidered for rendezvous. Each of these transfer maneuvers may be extended by considering
parking in one of the transfer ellipses or parking in intermediate ellipses obtained
through the various impulse splitting techniques.

Coplanar

Figure 19 describes the orbital geometry and phase angles for rendezvous between
coplanar circular orbits. The phase angle, B, is defined as the angle between the
rendezvous vehicle and the target location at the inception of rendezvous, measured
positive in the direction of motion. The angle By is the initial phase angle re-
guired for rendezvous via g Hohmann transfer ellipse and AB is defined as the
difference between the actual phase angle and the Hohmann phase angle. In the dis-
cussion following it will be assumed that the interceptor is initially in a circular
orbit of radius r; and that rz > r; unless otherwise noted. The results, of course,
may be applied to the inverse case, rz < r;, by proper interpretation.

The use of the Holmann transfer ellipse to achieve rendezvous is investigated
in 31, 231, and 250. The required phase angle, By, for a given radius ratio, k, is
derived in 231 and a plot of phase angle vs. radius ratio is given. It is shown
that, for rp, > r;, the target is always rendezvoused with on the first revolution of
the target body; however, for r, < r,, multiple revolutions of the target body must
be allowed for smell k. It is shown in 31 that By is limited to the range O < B, =
m[l - (%)3/2 ] X 116.36 deg.

The required delay time to make the Hohmann trip, for a giVen phase angle, is
derived in 231, and it is shown that for fixed r, and rp, the total rendezvous time
increases linearly with increasing AB. The maximum delay for a Hohmann transfer
is equal to the synodic period, and therefore the rendezvous time for the Hohmann
maneuver increases without bound for r; - r,, necessitating the use of other
transfer methods (250).
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As an alternative to the Hohmann maneuver, the bi-elliptic transfer is
investigated in 17, 31, and 250. All the analytical results obtained are
contained in 31, although many were derived earlier. It is shown that full AB
coverage, i.e., 0 < AB s 2rm, is available only for outer bi-elliptic transfers
(ry > rs). For inner bi-elliptic transfers (r; < rz) the upper limit occurs

for ry - O and is given as a function of ry and re in 31. For ry 2 1y, AP
is slightly less.

The bi-elliptic rendezvous time decreases linearly with increasing AB from ty
+ 3Tg/2 to ty + ib/2 for the outer bi-elliptiec, and from ty + 13/2 to a lower limit
determined by the value of AB pa.x for the inner bi-elliptic. A comparison of
the Hohmann and bi-elliptic rendezvous times shows that the Hohmann maneuver is
always faster than the bi-elliptic maneuver for ry < ry < rz. For r;<r the bi-
elliptic maneuver is faster than the Hohmann; the break-even point, i.e. the point
where the Hohmann and bi-elliptic rendezvous maneuvers require equal times, for
the inner bi-elliptic maneuver can be shown to correspond to AB = T (1 -x ‘3/2]
and therefore the inner bi-elliptic is faster than the Hohmann for all AB = m
(L -%X~%=2)., Forr, >rz, the Hohmann maneuver requires less time than the bi-
elliptic for AB = 37 [1 - k.“é/zjg it requires less time for all AB, O = AR =
om, for k 2 9%a=~ 2.08. Coupling this to orbit transfer results (107), it is seen
that the Hohmann rendezvous maneuver requires less time and a greater total AV than
the outer bi-elliptic mgneuver if k > 15.582. It is shown in 31 and 250 that no
benefits may be gained (either in AV or t) by waiting before initiating a bi-
elliptic rendezvous maneuver. Further, a AV penalty is associated with waiting
before initiating the transfer maneuver, if ry /m < 15.582.

The question of parking in ellipse I or II (i.e., the first or second
transfer ellipse of the bi-elliptic transfer) is considered in 31. Equations
for the rendezvous time are derived for parking in ellipse II, and break-even
points in AB (points where Hohmann time is equal to bi-elliptic time) are ex-
pressed as functions of r,, rp, and n, the number of revolutions in the parking
ellipse. It is shown that the case of parking in ellipse I does not yield con-
venient equations describing the rendezvous. However, parking in ellipse IT
is more desirable in terms of both AV and t.

For parking in ellipse IT with r; < rp the Hohmann maneuver requires less time
for AB < (2n + 1) w[1 - k™3 ]; with ry > rp the Hohmann is faster for AB < (2n +
3) ml1 -x22 ], 1f x 2 [(20+3)/(2n+1)1? ®, then the Hohmann is faster than the
outer bi-elliptic for all B, i.e., 0 =B < 2m, This expression gives a convenient
way of determining the maximum number of revolutions in the parking ellipse for the
bi-elliptic maneuver with parking to be competitive with the Hohmann maneuver.
Convenient plots of AB vs. t (31), with lines of constant AV and n for the Hohmann
and bi-elliptic maneuvers, are shown to be useful in performing trade-off studies
for a given rendezvous mission. The bi-elliptic maneuver with parking in ellipse
IT is also shown to be an effective method of reducing t for a given AV capability.
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A further possible rendezvous mode 1s the semitangential transfer. Only
inner semitangential transfers need be considered (207). To define this transfer
mode it is necessary to specify the velocity at pericenter of the transfer ellipse,
Ve . Equations describing the total AV, the true anocmaly on the transfer ellipse
at both intersection points with the final orbit, the phase angle AB, and the
rendezvous time, are developed as functions of r;, rz, Ve, and the number of
revolutions in the transfer orbit. It is shown that the least effective mode for
minimizing t for a given AV capability is the semitangential transfer. Rendezvous
at the second intersection point is shown to be more desirable than at the first.
Semitangential maneuvers are shown to be effective in reducing the total rendezvous
time for a given AB at the expense of AV. For higher values of AV, the semi-
tangential maneuver with parking offers a AV saving over the simple bi-elliptic
transfer at the expense of rendezvous time.

A sub-case of rendezvous between coplanar circular orbits, the case where
r, = Iy, may be considered separately. Although the previous results apply in

the limit as rp — r;, this specific case of equal orbits has been studied in 29,
1h2, and 308.

The variational equations are developed for two-impulse rendezvous and one-
impulse intercept, as functions of the number of revolutions in the transfer
orbit, and it is shown (142) that the intercept and rendezvous trajectories for
this case are equivalent. It is further shown that the use of tangential, apsidal
impulses constitutes a nonoptimal singular solution to the necessary equations
for a given number of revolutions. However, for most cases, these conditions are
near optimal, and an analytic solutiom may be obtained using a small parameter
expansion about the singular solution. It is shown that the thrust angle, ¢, in
any case, is small (29, 1k2).

— s i o g

Rendezvous between noncoplanar circular orbits has received less attention
than the coplanar problem due to the increased difficulty associated with con-
sideration of the out-of-plane motion. Three transfer methods are proposed in
250: (1) Hohmann with plane change (at nodal points), (2) bi-elliptic,initiated
at nodal points, with plane change at ry.y, and (3) the modified Hohmann (in-plane
Hohmann to rz, followed by plane change impulse at line of nodes).

The definition of AP is analogous to that in the coplanar case; here
B=0Q -Q, wvhere Oy (1 =1, 2) is the angular displacement from the line of
nodes for the target and interceptor, respectively, and AB = AB (mod 2m). For
the Hohmann maneuver, AR must be zero at the point where the interceptor crosses
the line of nodes, and therefore would lead to excessively long waiting times for
most cases. The relationship between AB and ABn for any given configuration is
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given in 250. The velocity requirement for bi-elliptic rendezvous, with the
plane change occurring at rp,x for any fixed orbit inclination, is given in 250.
It is shown that the modified Hohmann results in definite penalties over the
Hohmann for even small changes in the phase angle.

The equations for optimal plane change and the total velocity requirement
for bi-elliptic rendezvous are given as functions of ry, r; (or AB), re and i
in 17. It i1s shown that for ry = r;, the equations reduce to those for the
Hohmann transfer with plane change. Under the assumption that the interceptor
is at the line of nodes when the rendezvous command is given for the bi-elliptic
maneuver, and at the line of nodes when rendezvous is achieved for the modified
Hohmann =-- which could lead to errors in rendezvous time as large as %-Ea Tor
the bi-elliptic maneuver, and %-Tg for the modified Hohmann~-generalized results
are given in 17.

For k ~ 1, the outer bi-elliptic transfer with optimum plane change yields
slightly lower AV than the Hohmann transfer with optimum plane change for
1< r/r, <2; the range of k increases for increasing plane change, i. The
modified Hohmann AV is always greater than or equal to the Holmann AV (equal
for i = 0). Within the assumptions made, the same break-even analysis on the
vhase angles and the regions of interest hold in the noncoplanar case as in the
coplanar case.

Figures 20 and 21 summarize the comparison of the bi-elliptic rendezvous
maneuver with the modified Hohmann maneuver for both the coplanar and noncoplanar
cases. Note that the modified Hohmann maneuver, as defined for the noncoplanar
case, is equivalent to the Hohmann for i = O.

Figure 20 is a plot of riﬁm_ vs AB for constant k. The regions discussed in
the text are illustrated on the figure. Figure 21 illustrates AV for the modified
Hohmann and outer bi-elliptic rendezvous maneuvers with equal rendezvous times
normalized with respect to Vci, as a funetion of k, AR and plane change angle, i.
The regions where the bi-elliptic requires less AV than the modified Hohmann is
also illustrated. Note that this region is bounded on the right by the vertical
line through AB = 360 deg.

General Orbits

The problem of rendezvous between general orbits is exceedingly more complex -
than circle-to-circle rendezvous. Several methods have been proposed for rendezvous
between general orbits. One of the earliest was a four-impulse method suggested
in 308. The scheme involves: (1) plane change to target orbit<plane, (2)
transfer orbit is chosen to be tangential to the target orbit at a point (a
numerical method is outlined for generating a family of such orbits), (3)
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period of interceptor orbit is altered so that rendezvous occurs at the tangency
point in some arbitrary time, and (L4) tangential AV is applied at the rendezvous
point to achieve rendezvous. A general injection technique, similar to the above,
is discussed in 116. The phasing technique (chasing, looping, epoch changing, or
impulse splitting) is discussed in 108, 116, and 267. This consists of using

period-changing impulses, at apocenter or pericenter, to satisfy the time con-
straint.

The problem of rendezvous between a circle and a nonintersecting, coplanar
ellipse (or ellip5e-to-circle), using N tangential impulses, is considered in 282,
It is shown that the AV for this case is equal to the Hohmann transfer AV and that
the number of impulses may be reduced to, at most, three. Necessary and sufficient
conditions that rendezvous be possible at any given time are derived, and an ex-
pression 1s given for the lowest rendezvous time which can be achieved by any
scheme which also results in minimum AV.

The use of the impulse function (see Appendix I) is examined in 25 and 202 for
applications to the general orbit rendezvous problem. Optimum rendezvous tra-
jectories in the vicinity of the optimum transfer are determined in 25 by this
method. The use of the impulse-splitting technique is also examined as a means of
extending the range of B in which rendezvous may be accomplished, using the AV
required for optimum two-impulse transfer. Various other numerical studies have
been performed for interplanetary rendezvous; however, no general conslusions
may be drawn from them.

Time~Fixed Rendezvous

By definition, the category of fixed-time rendezvous encompasses & narrower
field than the time-limited case. The desire here is to determine the optimum
rendezvous trajectory between orbiting bodies when time is prescribed to be a
fixed value. There is some overlap between the time-fixed and time-limited cases.
There are a8 number of fixed~time rendezvous papers which include trade-off studies
of AV and t, and as such could be considered time-limited. Most of these, however,
are for particular problems and general conclusions can not be deduced from the
results. Time-fixed rendezvous problems are subclassified according to (1)
neighboring orbits and (2) general orbits.

Neighboring Oribts

An important, recent development in the solution of this problem is described
in 238. The approach in 238 is geometric in nature and consists of applying
Iawden's theory of the primer vector to the equations of motion, linearized about
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an intermediate orbit. Specifically, the problem treated is rendezvous between
coplanar circular orbits with the equations of motion linearized about an inter-
mediate circular reference orbit. TFor this case the linearized equations of
motion and the adjoint equations are uncoupled and analytically simple. The
solution to the primer vector equations is given by:

A = A(cos t + 2B)

i = A(-2sin T - 3BT + C)

where A and p are the radial and circumferential components of the primer,
respectively, T is nondimensional time, and A, B, and C are arbitrary integration
constants. These equations are a parametric description of the primer locus in
the A - p plane. For B = 0, the locus is an ellipse, first shown by Lawden (172);
for B % O the locus is a multiple-loop, cyéloid-like curve. Typlcal plots of the
primer locus are given in 238 for various values of B. The constant C merely
determines the relative position of the locus with'respect to the A axis and A is
a normalizing constant. Utilizing this locus, methods for generating two-, three-,
and four-impulse optimal solutions to the fixed-time rendezvous problem are
developed. It is shown that only B > O need be considered (solutions for B < O
are reciprocal solutions of B > 0); in addition, for B > 2/3 the locus contains no
loops and only two-impulse solutions are possible. In all cases, the boundary
value problem is handled separately.

The existence of optimal four-impulse solutions was first demonstrated in 302.
In the four-impulse case the intermediate impulse times and thrust angles may be
obtained directly from the primer locus. It is shown that: (1) the impulse times
are symmetric about the midpoint in time and (2) the first and fourth, and the
second and third impulses have equal radial components and tangential components
which are the negatives of each other. Optimal four-impulse solutions exist only
in the range,l < t < 2.5, where t is the rendezvous time measured in reference
orbit periods. There is another group of four-impulse solutions in the range,
0.46 = £t < 1.5; however, these are shown to be nonoptimal for the circle-to-circle
case. It is further shown that terminal coasts are not allowable for four-impulse
solutions in the circle-to-circle case.

Optimal three-impulse soltuions lack the symmetry found in the four-impulse
solutions. While this makes the intermediate impulse times more difficult to
evaluate, 1t also increases the number of three~-impulse primer solutions satisfying
the necessary conditions. This results in a large part of the plane of reachable
states (Fig. 22) occupied by three-impulse solutions. Terminal-coast three-impulse
solutions exist as & subset of optimal four-impulse solutiongs. As in the case of four-
impulse solutions, the thrust angles are obtained directly from the primer locus.
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A normalized plot of the reachable final state variations is shown in Fig. 22
(238). Here the time is measured in units of the reference orbit period; 60 and
8r correspond to the normalized variation at rendezvous from the reference orbit.
The regions for optimal two-impulse, two-impulse with terminal coasts, three-impulse,
three-impulse with terminal coasts, and four-impulse trajectories, are shown. The
Hohmann with final coast region is also illustrated. The great extent of the region
of optimal multiple-impulse solutions is quite evident from the figure.

As an example of the use of this figure, consider rendezvous between coplanar
circular orbits of radii r; = 0.95 and rp = 1.05. This gives = (r; + r2)/2 =
1.0, and ér = (rg - rl)/ro = O0,1. Assume that, at the instant the rendezvous
commend is given, B = 0.35m and that the desired rendezvous time is one reference
orbit period. It is shown in 238 that 68 =B - 3Tér/h, where T 1s the time in
radians, for the circular orbit case. This gives 68 = 0.2m, and 88/6r = 2m. For
66/6r =2mand t = 1, Fig. 22 shows that optimal rendezvous is accomplished using
three Impulses and that the normalized cost is approximately twice the Hohmann
transfer cost. This sample calculation is illustrated in Fig. 22.

General Orbits

The problem of fixed-time rendezvous between general orbits, as for the case
of fixed-time transfer, has received little attention beyond numerical studies
relating to particular problems of interplanetary rendezvous. Optimal time-fixed
rendezvous in the vicinity of the optimum transfer trajectory has been studied in
25 and 202 using the impulse function technique mentioned previously. The pos~
sibility of reducing the two-impulse, fixed-time rendezvous requirements by
employing intermediate impulses has been investigated in 52, 297, and 298. For
a given launch time and transfer time, the two~-impulse rendezvous problem is
completely determined, whereas in the three-impulse problem, certain variables
related to the position and timing of the intermediate impulse must be optimized.
In the most general case this is a four-parameter optimization. A method of
generating optimal three-impulse rendezvous trajectories, under the assumption
that intermediate impulses are tangential, is developed in 297; for this case
a two-parameter optimization is required. The previous method is expanded in 298
to consider nontangential impulses, although no out-of-plane component is allowed;
for this case a three-parameter optimization is necessary. In both cases, the
starting solution is based on the two-impulse rendezvous trajectory, a procedure
which breaks down for central angles greater than 2m. For larger central angles
a starting guess must be employed.

A general method, i.e., a four-parameter optimization for generating three-
impulse rendezvous trajectories, is developed in 52. Starting solutions in this
method are based on the low-thrust solution to the problem. A low~thrust analog
is shown to be useful in determining the proper number of impulses on an optimal

60



G-910557=-11

impulsive thrust trajectory. The methods described above were applied to Mars-
Earth rendezvous, and three-impulse trajectories were shown to be more economical
than two-impulse trajectories for long-time, long-angle transfers. Sensitivity
to variations in the launch date was also shown to be less pronounced for
three-impulse trajectories.

The concept of the primer vector (172) has been extended to nonoptimal tra-
jectories in 183 and 313 and has resulted in necessary and sufficient conditions
for locally optimal two- and multi~impulse trajectories. A method for generating
optimal multi-impulse trajectories based on the two-impulse primer vector solution
is presented in 129.

DISCUSSION. OF RESULTS

One of the objectives of this study was to isolate problem areas, within
the subject of impulsive trajectories, in which current knowledge is incomplete
and toward which the application of future research should be devoted. In ad-
dition it was intended that spaceflight applications would be enumerated in which
such research would be beneficial.

Three specific problem areas in which additional resegrch is necessary have
emerged in this investigation: fixed-time trajectories, optimal multi-impulse
modes, and optimal rendezvous. The applications for which it is felt such research
would provide Immediate and long-range benefits are: space rescue, operations
in near-Earth space, disorbit to a specified impact point, interplanetary probes
and landers, and abort from terrestrial and interplanetary missions.

Some of these applications do not in themselves define specific impulsive
trajectory problems. For exXample, space rescue is a general subject within
which a variety of specific problems can be defined. One such problem is that
of rendezvousing with an orbiting spacecraft by a direct launch from Earth,
followed by a return to Earth or subsequent rendezvous with a space station.
The same problem can be formulated with both launch from, and return to, a
space station as boundary conditions.

Each of the other applications offers a similar degree of flexibility in
the definition of specific problems. The point is that these applications
merit priority because they are fundamental to space flight. Thus, the problem
“areas which were to be isolated in this study should relate to these applications
in a real sense, or else research in impulsive trajectories will reduce to
academic exercises. Some explanation of how the three problem areas cited above
relate to the enumerated applications is therefore in order.
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In the early phases of the study, it was anticipated that time constraints
would constitute an important classification by which papers could be readily
differentiated and categorized. But it became evident after a substantial
percentage of the papers had been reviewed that, in the overwhelming majority of
papers, time is left entirely open, i.e., no time constraint is imposed what-

soever. Therefore, major categories of time-fixed and time-free constraints
could not be used.

One characteristic of the five space flight applications listed earlier is
that in each case time is a significant if not a dominant consideration. It is
difficult to conceive of a space rescue problem in which at least an upper
limit on time is not imposed. In the abort, orbital operations, and inter-
planetary applications, time constraints gre likely if meaningful problems are
to be defined. Only in the disorbit application do time-open problems play an
important role, and even here the desirability of a time limit is not without
foundation.

Use of multi-impulse modes in the solution of trajectory problems is a topic
of considerable current interest. Some multi-impulse modes, such as the bi-
elliptic transfer, are well documented and easily understood. More recent
developments in this area are not as universally known, but have been shown to
yield benefits in some applications which indicate the desirability of additional
research.

The characteristic which most effectively describes multi-impulse modes 1s
flexibility. Use of multiple impulses invariably affords the opportunity to
optimize a trajectory as opposed to determining a trajectory which merely
satisfies boundary conditions in a given problem. Widening of launch opportunities
and reductions in fuel consumption are the results, and since these are objectives
common to all space flight problems, further research in this area is clearly
desirable,

It was pointed out in the section on rendezvous, that in terms of the
number of papers devoted to this problem alone, rendezvous by impulses is not a
well documented subject. Optimal rendezvous remains virtually unexplored. But
several of the applications noted above necessarily involve rendezvous, namely,
rescue, space station operations, and interplanetary landers; and rendezvous may
also play an important part in the remaining applications. In particular, it
should be stressed that fixed-time, multi-impulse rendezvous is perhaps the most
fruitful area of research in impulsiVe trajectories.
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The basic recommendation that has come out of this investigation then, is
that the promotion of research in three specific areas can lead to solution of
meaningful problems in priority applications within space flight. These problem
areas are fixed-time trajectories, optimal multi-impulse modes, and optimal
rendezvous. The difficulty assoclated with pursuit of such prcblems should not
be minimized. Indeed it is this very fact which has discouraged past research
in the areas in question. However, by drawing upon the body of existing know-
ledge, which as evidenced in the survey is considerable, and by utilizing the

promising techniques described in Appendix I (or by devising new ones), progress
can undoubtedly be made.

As an additional recommendation, optimal solutions to space flight problems,
especially in the sense of minimizing fuel, should be pursued. The literature is
full of heuristic schemes, the chief virtues of which are simplicity in
analysis and implementation. Conditions of optimality, even when they result
in seemingly academic solutions, can provide important information, and should
be applied. A good case in point is the use of parabolic transfer arcs which
occur so frequently in time-open problems. Even though the solution itself is
completely impractical, the knowledge that infinite time is optimal, which is
not the case in all time-open problems, constitutes useful information. Further-
more, the lower bound on fuel consumption, which can be readily calculated for
such a solution, is also useful. In other cases, where the optimal solution
is not impractical, the tradeoff betWeen optlmal performance and complexity in
implementation should be ascertained before a nonoptimal approach is adopted.
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APPENDIX I

Methods of Analysis

This appendix is devoted to a brief exposition of the methods of analysis
which have been used in optimal impulsive trajectory problems. These methods are
taken up in a roughly chronological order, the last few being the most_recent
methods and the most promising approaches in the solution of future problems.

Some of the simpler impulsive trajectory problems have been successfully
analyzed by application of the theory of ordinary maxima and minima. By successive
differentiation of the system of algebraic equations which describes a problem it
is sometimes possible to determine the optimal placement, direction and magnitude
of impulses (272). In complex problems, however, this approach breaks down. It
was shown in 170 that, for time-open transfer between coplanar orbits, a system
of Tn - 3 equations (n is the number of impulses) in as many wnknowns must be
solved. No numerical evidence of the solution of these equations has been
presented.,

Another technique which has been applied with limited success is the hodograph
method, as described, for example, in 2. The velocity and acceleration hodographs
provide a unique tool for understanding the dynamics of impulsive trajectories
(22). However, results obtained by this method have thus far been confined to
time-open, two-impulse transfer between orbits or terminals (6, 7, 269).

The indirect methods of the calculus of variations or Pontryagin's Maximum
Principle can be applied to optimal impulsive trajectory problems. An analytic
formulation of the two-impulse transfer problem, including necessary conditions
for optimality, was derived in lSh, and the lengthy system of solution equations
was reduced in 5hk. An extension was made in 235 to present additional constants
of the motion so that an iterative numerical method can be more easily implemented.

One numerical method which has proved successful in obtaining solutions to
the time-open, two-impulse transfer problem is the adaptive steepest descent
program described in 202. Here an "impulse function", I, is defined and min-
imization of AV is accomplished by taking steps in the gradient direction in the
three space describing the two-impulse, time-open problem, i.e., the steepest
local path to decrease I, until a relative minimum is reached. Results obtained
by this approach appear in 202 and 203. Another numerical method, quasi lineari-
zation, has been used successfully in solving a difficult two-point boundary value
problem (315). The application im 315 was a three body problem involving a two-
impulse trajectory.
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A significant step in the direction of achieving analytical solutions to
impulsive trajectory problems was taken in 45 and 34. By replacing time with
impulse as the independent variable in a variation-of-parameters formulation,
some useful new results were obtained concerning the coasting arcs which Join
impulse points on an optimal impulsive trajectory. This technique has been
utilized in several subsequent studies of time-open orbit transfer (35, 212, 213,
62, et al), and significant progress has been achieved in each case. A concise
description of both the varistlon-of-parameters formulation and adaptive steepest
descent appears in 148,

The variation-of-parameters approach has also led to some geometric concepts
which provide new insight into optimal impulsive trajectories. The "spools"
first described by Contensou in 45 have been further studied in 81, 200, and 205.
A similar geometric interpretation of optimal impulsive trajectories was utiligzed
in 40 with respect to time-open disorbit.

A method which has seen much recent use can be described as primer vector
maximization. The concept of the primer was first proposed by Iawden in 156,
and is described in detail in Chapters 3 and 5 of 172. Conditions on the primer,
which is the adJjoint vector associated with the velocity components, can be used
to describe an optimal trajectory, either with finite thrust periods or impulses.
The technique was applied to the time-open, coplanar, ellipse-to-ellipse transfer
problem in 81, to the two-impulse noncoplanar problem in 185, and has since found
application in optimal, multi-impulse, transfer and rendezvous analyses. In
particular, extension of the primer concept to nonoptimal trajectories in 183 ‘
has resulted in the establishment of necessary conditions for the inclusion of
additional impulses on a trajectory. An iterative, numerical applicstion in which
results for a fixed-time rendezvous problem were obtained ls presented in 129,

A sufficiency test for fixed~time impulsive transfer trajectories was developed
in 313. This test shows that two-impulse transfers which satisfy the primer vector
conditions are locally optimal. However, multiple-impulse trajectories must satisfy
additional conditions given in 313 to be locally optimal. These additional con-
ditions are related to the Jacobi +test of the classical calculus of variations.
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APPENDIX IT

The Impulsive Approximation

The impulsive approximation consists of replacing finite-thrust powered
phases of finite duration by instantaneous changes of velocity. The results of
this study are valid, for practical application to real problems, only to the
extent that the impulsive approximation itself is wvalid. The noneXactness of
this approximgtion in realistic cases, and in particular the performance penalty
associated with the use of finite thrust instead of impulses has been shown (243)
to be due to the effects of: (1) gravity gradient, and (2) nonconstant thrust
direction during thrusting periods.

Lawden (163) has considered the problem of escape from circular orbit using
high thrust. He applies the perturbation equations about the optimal impulsive
solution to the problem, assuming constant thrust acceleration, a, and derives
the solution through second order in A, where A = l/a. The total AV penalty,
to second order in A, is 0.001615 kBVb, for an optimal thrust angle program. The
problem of escaping from a circular orbit with finite velocity at infinity is
treated in 184 in a similar manner. Here the AV penalty is derived as a function
of V. In 292 and 306, similar methods are applied to Hohmann-~type transfer
maneuvers. An examination of the changes in the transfer orbit elements due to
finite thrusting time for various thrust levels is undertaken in 306 and it is
concluded that any error analysis based on the impulsive approximation is of
doubtful value.

Numerical examinations of the effect of finite burn time for coplanar man-
euvers using non-optimsl steering programs are found in 87 and 96; a graphical dis-
play of the results is included in both. A definition of high-, intermediate-,
and low-thrust systems is given in 87 in terms of the change in V, for escape or
capture problems utilizing finite-thrust with the same AV expenditure as the im-
pulsive soltuion.

The most complete analysis of the impulsive approximation is found in 243, In
that study, an improved approximation, allowing discontinuities in both position and
velocity, is developed for the time open case and shown to be useful in evaluating
the AV penalty for finite~thrust solutions relative to the impulsive solution. A
method for determining whether the impulsive approkimation is valid, for a given
tolerable performance penalty, in terms of the burning time and the Schuler frequency
(p/rs) is presented. An upper bound on the performance penalty is also given. This
method has been successfully applied and shown to be quite useful for error analyses.

o
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It may be concluded that impulsive trajectory analysis provides a good estimate
to the fuel requirements of most missions for a wide range of thrust-to-weight
ratios for high-thrust chemical and nuclear rockets. However, any error analysis
based on impulsive trajectories is of doubtful value. The generalized impulsive
approximation developed in 243 has been found to be useful in providing a more
accurate estimate of the trajectory parameters and fuel requirements and should
be used for detailed trajectory analysis.
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APPENDIX IIT

Singular Arcs
by T. N. Edelbaum

Singular arcs are a mathematical curiosity which have recently aroused
congiderable interest because of pessible practical implications for space flight.
A minimum-fuel trajectory containing singular arcs has subarcs where the thrust
assumes values in between its maximum and minimum values. Until recently, it
was believed probable that such subarcs do not occur in minimum-fuel rocket
trajectories. However, Robbins has recently demonstrated (2LL) that singular
arcs are minimizing for some end conditions for fixed-time coplanar trajectories
in an inverse-square field. These trajectories may be approximated arbitrarily
closely with a finite number of impulses (225). However, the number of impulses
required to obtain near-minimum fuel consumption is not known. This Appendix
will briefly review the known results on singular arcs as well as their
significance.

The theory of singular arcs becomes quite simple if the gravitational field
is linear. In such fields, singularity corresponds to non-uniqueness and
represents cases where the minimum fuel consumption may be realized by many dif-
ferent trajectories with different numbers of impulses or with finite thrust
arcs. It is shown in 224 and 265 that in such fields the minimum fuel consumption
for the singular case can be realized with a number of impulses no larger than
the number of specified terminal conditions.

One important example of a linear field is field-free space far from any
massive body (70, 177). Here singular arcs arise when the terminal position is
unconstrained. These singular arcs may be replaced by a single impulse with the
same fuel consumption. The other important case of singular arcs in linear
gravitational fields occurs for time-open transfers in the close viecinity of a
circular orbit. In this case, there is a coplanar singular arc treated in 206,
and a noncoplanar singular arc treated in 35, 81, and 200. Breakwell has recently
shown that a slightly nonlinear version of the latter problem requires no more
than three impulses (35).

In nonlinear fields, singular arcs no longer éorrespond to nonuniqueness
and the theory becomes much more complicated (93, 137, 225). For example, 137
demonstrates that Jjunctions between singular and nonsingular arcs for minimum-
fuel rocket problems ideally require an infinite number of closely spaced ‘
thrusting periods and coasting periods.
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All the known results for nonlinear fields are for coplanar inverse-
square fields. The original result which stimulated most of the work reported
herein was Iawden's discovery and analytic integration of the time-open singular
arc generally called the Lawden spiral (168, 169, 172). This singular arc has
many interesting properties. One of these is that it is a locus of infinitesimal
two-impulse transfers having zero coasting arc-length (34, 47, 81, 212).

A fair amount of new research in optimal control theory has been devoted to
proving that the Iawden spiral is not minimizing (88, 135, 136, 137, 1k, 242).
An incorrect version of such work is given in 134.

While this new work has shown the Iawden spiral to be nonoptimal, the fixed-
time éoplanar singular arcs considered in 172 remain for consideration. One of
these ‘arcs corresponding to free central angle can be integrated analytically (72),
as can the Lawden spiral. In general, numerical methods must be used (242, T78).
Reference 242 demonstrates that some of these singular arcs are actually minimum-
fuel trajectories. Included among these 1s a portion of the angle~-open arc
duscussed in T2.

In sumary, a minimum-fuel rocket trajeétory may ideally require either a
singular arc or an infinite number of impulses (61). The number of impulses

required in practice to approximate the fuel consumption of these trajectories
remains to be determined.
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10,

11.

12.

13.

GLOSSARY OF IMPULSIVE TRANSFER TERMS

apocenter - point on an orbit which is most distant from the force center
circumferential - radial component is zero

coaxial ellipses - ellipses whose major axes are co-linear, either aligned
(pericenters on the same side) or opposing (pericenters on
opposite sides)

cdnjunction ratio - ratio of the radius of the cdnjunction point of bi-
' elliptic transfer ellipses to the initial radius

cotangential - the condition in which an orbit is tangent to two connected
orbits simultaneously

disorbit - maneuver in which a body i1s removed from an orbital condition and
intercepts a final radius (usually coincident with the upper limit
of the sensible atmosphere)

domain of manéuverability - reglon 1n state space which can be reached by
optimal application of a control parameter

down-range angle - great circle arc traversed in the plane of initial motion
entry angle - path angle at moment of atmospheric entry
exterior conjunction - bi-elliptic transfer ﬁith conjunction ratio greater
than the final to initial radius ratio; also known as
outer bi~elliptic
generalized Hohmann or tilted Hohmann - three-dimensional version of the Hohmann
transfer using circumferential, apsidal
impulses
interior conjunction - bi-elliptic transfer with conjunction ratio less than
the final to initial radius ratio; also known as inner

bil-elliptic

interior impulse - Impulse not located at a boundary point of the trajectory,
i.e., in the interior of the trajectory
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1k,

15.

16.

17.

18.

19.

20.

2l.

22,

23.

2k,

- lateral range angle - great circle arc traversed normsl to the plane of

initial motion

path angle - measured between velocity vector and local horizontal, positive
outward from focus

pericenter - point on an orbit which is closest to the force center

phase angle - instantaneous angular separation between an interceptor and
target vehicle, measured positive in the direction of motion

primer vector - a vector formed of components which are adjoint variables
associated with the components of the velocity vector; the
concept was introduced by Lawden in his wvariational formulation
of the optimum rocket trajectory problem

semitangential - designates a transfer orbit tangent to only one of two
connected orbits

switching point - point on an optimal trajectory composed of subarcs at which
a control parameter exhibits a " jump" or discontinuity

terminal coast (initial or final) - coasting arc which forms an extension of
the trajectory before the initial impulse
or beyond the final impulse; an initial
coast is equivalent to a delayed departure
and a final coast is equivalent to an early
arrival

thrust angle - measured between thrust vector and local horizontal, positive
outward from focus

transfer through infinity - a transfer involving parabolic intermediate
conditions; escape to infinity on a parabola permits
changes in direction to be performed by one or more
infinitesinal impulses at infinity; (sometimes
referred to as "bi-parabolic" transfers)

useful angle - angular range between tangent and local horizontal directions
within which thrust must be directed. (see Fig. 16)

TL



G-910557~11

LIST OF SYMBOLS

r » Radius
v Velocity

AV Chéracteristic velocity

t Time -

a  Semi-major axis

e Eccentricity

y/ Semi-latus rectum

i Inclination

W Argument of pericenter

Q Argument of the ascending node
v True anomaly

] Central Angle

) Thrust angle

Wi Path angle

B Phase angle

T Orbital period

k Radius ratio rp /rl

P Radlus of pericenter

A Radius of apocenter

T Turning angle between hyperbolic asymptotes
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b Ratio of pericenter radii, P /Pe

¥ Ratio of pericenter to apocenter, Py /A

0 fminglv,, Pe)

ma.X(Pl 3 Pg )

o JmingP: , Pa)

maX(Al, Ae)

Isp Specific impulse

n Gravitational parameter
Subscripts

0 Reference Orbit

1 Initial Condition

2 Final Condition

® At Infinity

esc Escape

ior ii Intermediate
c Circular
opt Optimum

H Hohmann

S Synodic Period
ho] Pericenter
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Point

=

> O RoH»Qw

curve AL

Point

= Q\'_t,‘l:l\

curve ARO

Note:

TABLE IT

Location of Points in Figure 13

4 iz, deg slope curve
1.0 60 - radial EB
1.0 60.185 radial BRL
0.33333 0 circumferential EB
0.,28942 0 circumferential ic
1.0 0 circumferential AQ
0.388 37.5k4
0.37194 34.043
0.66023 55.6
0.53k 36.68

{ 0.hhT 36.88
g iy, deg
1.0 60.185
0.37L9k 34.043
1.0 0
0.707 h7.92
0.529 54,00
0.3089 58.488
0 60

point Q is symmetric with respect to point Q
point E; is symmetric with respect to point F
curve AQ is symmetric with respect to curve AJQ
curves B L and IC are tangent at L
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M in zone

AJB
AJE
~ BJQLC
JQILK
CER IK
below F IC

N in zone

AgbB

QAR/

/
cQo
qRo ,
ORE, D ,
below ODE,

TABLE III

Optimal Transfer Modes in Fig. 13

Optimal Mode

CGeneralized Hohmann

Either Generalized Hohmann or Three~Impulse
Either Generslized Holmann or through Infinity
Any mode can be optimal

Either Three-Impulse or through Infinity
Through Infinity

Optimal Mode

Generalized Hohmann

Either Generalized Hohmann or Three-Impulse
Three-Impulse

Either Generalized Hohmann or through Infinity
Any mode can be optimal

Either Three-Impulse or through Infinity
Through Infinity
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ESCAPE MANEUVERS FROM CIRCULAR ORBITS

(a) ONE-IMPULSE ESCAPE

(b) TWO-IMPULSE ESCAPE

2

(¢) THREE-IMPULSE ESCAPE
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G-910557-11 FIG. 8

CIRCLE-TO-ELLIPSE TRANSFERS

TERMINAL ORBIT
— — —— TRANSFER ORBIT

(a) ELLIPSE INSIDE CIRCLE

NON-INTERSECTING
ORBITS

~

\\——/

(c) INTERSECTING ORBITS
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CIRCLE-TO-ELLIPSE TRANSFER
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TWO-IMPULSE COPLANAR COAXIAL ORBIT TRANSFER

a. AXES ALIGNED"

NON-INTERSECTING INTERSECTING

USE TYPEI USE TYPEI

b. AXES OPPOSED

NON-INTERSECTING INTERSECTING

USE EITHER TYPEIORI USE TYPEI
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G-910557-11 FIG. 11

COPLANAR ALIGNED COAXIAL ORBITS
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COPLANAR NONINTERSECTING COAXIAL ELLIPSES WITH AXES OPPOSED

1.0
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G-910557-11 FIG. 13

DETERMINATION OF THE OPTIMAL MODE OF TRANSFER
BETWEEN ALIGNED COAXIAL ORBITS

NOTATION

GH GENERALIZED HOHMANN
3-1 FINITE THREE-IMPULSE
00 THROUGH INFINITY
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